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Preface

This is the final report of a year-long research project on
the implementation of a guided inquiry approach using the
GEOMETRIC SUPPOSER, a microcomputer software series, to teach
high school geometry in three Boston area suburbs during the
1985 - 1986 school year. The project assessed student
learning and examined the many and varied issues involved in
the implementation of such an approach using a variety of
data sources.

Below is a description of the contents of each section of the
report.

I. GOALS describes the overall objectives of the study, the
pilot research on which this study is pased, and the
specific research questions related to student learning
and implementation.

I1I. METHODS describes the general research strategy, the
intervention including an overview of our guided inquiry
approach, a brief look at the three sites and classes,
training and support at the sites, data sources and data
analysis.

III. RESULTS are organized by classroom perspective, teacher
perspective, and student perspective in order to provide
a coherent portrait of the experience and insights into
the perspectives of the key participants. The section
closes with a report on the pretests and posttests of
mathematics learning.

The classroom perspective first describes the make-up of
the student population and the background of the teacher
in each experimental class and then looks at the
evolution of key instructional elements in each class
during the school year.

The teacher perspective includes the writings of the
three teachers at mid-year and year-end and a report on
teacher interviews.

The student perspective reports on year-end interviews
with a sample of students.

The tests of mathematics learning include a test
designed to assess student ability to generalize from
data or from a description of a geometric situation and
a test designed to assess student ability to devise
proofs.

C.




IV. CONCLUSIONS integrates the various data in terms of the
two major foci of the study: student learning and
implementation issues. This section also presents

recommendations for altering the intervention and for
future research.
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The use of the GEOMETRIC SUPPOSER! in the classroom provides
an occasion to investigate whether the learning and use of
inductive and inquiry skills can deepen student understanding
of relationships, evidence, and argument in geometiy; whether
technology can be used to improve the effectiveness of
geometry learning and teaching; and to examine how the use of
technology in a guided ingquiry approach affects the
relationships among students, teachers, and the curriculum.

In 1984-5, M. Yerushalmy conducted a pilot research study
(Yerushalmy, 1986) on inductive reasoning in geometry and the
use of the GEOMETRIC SUPPOSER in Weston (MA) High School.

The research invelved two geometry classes (50 students),
rated as average by the school, and taught by the same
teacher. The SUPPOSER was the key tool in the instructional
process. No text was used. Data were collected from class
observations, homework of fifteen students, test scores
during the year, PSAT scores, and interviews with students
about their use of inductive thinking in the class.

Results indicated that the SUPPOSER facilitated the use of an .

approach which emphasized investigation and inductive
thinking. Students were able to "re-invent" definitions and
theorems that exist in the traditional curriculum and were
capable of exploring new, interesting, and complex geometric
ideas. Students demonstra*ed an ability to formalize their
intuition into concepts that are integral to the Euclidean
system.

Also du.ing the 1984-1985 school year, a number of teachers
from other Boston area school districts taught with the
SUPPOSER and participated in a users group. Anecdotal data
reported by members of this group were consistent with and
reinforced the findings of the Weston pilot study.

! The GEOMETRIC SUPPOSER is a series of tool software
programs which enables users to carry out with ease
constructions that are possible using straightedge and
compass. Users can construct geometric shapes (e.q.,
triangles, quadrilaterals, and circles), draw a range of
constructions (e.g., segments, medians, altitudes, angle
bisectors, etc.) on those shapes, and make measurements on
shapes and constructions. In addition, users can repeat
constructions carried out on one shape on another shape of
their choosing. The GEOMETRIC SUPPOSER is published by
Sunburst Communications, Inc.




Based on the results of the pilot research study and the
experience of the usg~rs group, the research team decided to
look in more detail a. two transitions that students must
make as they learn geometry in a guided inquiry context using
the SUPPOSER: moving from the specific to the general and
moving from conjecture to proof. In addition, an exploratory
study was initiated to examine the roles of teachers and
students in this approach and the relationships among
student, curriculum, teacher and technology in the
implementation of guided inquiry in geometry instruction.
This research was carried out in three classrooms in three
school districts. The research team introduced the SUPPOSER
to the teachers and provided them with materials and support
throughout the school year (see II.B. Intervention for
details).

More specifically, the research examined the following
questions:

Implementation

The SUPPOSER as a software program

How do students perceive the SUPPOSER? Do they find
it difficult to use the SUPPOSER?

How do teachers perceive and use the SUPPOSER? When
do they use it? When do they put it aside?

The guided inquiry approach
What effect does a guided inquiry approach have on
the teaching of geometry -- the content, the order in
which it is taught, the style in which non-inductive
material is taught?

What effect does tlie guided inquiry approach have on
the teacher-student relationship?

Do students® expectations of teacher roles and
teachers’® expectations of 'student roles change?

Is there a shift in control over the content and
process of learning?

Do roles and relationships among students change?
What difficulties do teachers experience?
What difficulties do students experience?

2
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Student Learning

The transition from the specific to the general

Are students able to generalize from data collected
about specific figures to conjectures about classes
of figures?

Over the course of the year, what is the evolution of
students” ability to generalize?

What difficulties do students encounter in moving
from the specific to the general?

At the end of the year, to what extent are students
able to develop generalizations when presented with
geometric situations and data?

The transition from generalization to proof

At what point do students seek to formalize their
conjectures?

Over the course of the year, what is the evolution of
students® ability to formalize their knowledge?

What kinds of evidence or process do they consider
sufficient to estabiish "proof?"

At the end of the year, to what extent are students
able to produce informal and formal proofs in
response to true geometric statements?

The research team began the school year with the software
series, some problem sets for teachers and students, and some
ideas about guided inquiry and technology. Over the course
of the year, working with teachers and students we learned
what it takes to implement a guided inquiry approach using
tool software in geometry instruction. We are grateful to
the schools, the teachers, and the students for their
readiness to try something new, for their patience as we
learned together, and for their valuable contributions. Our
insights and understanding are the product of their
experiences, hard work, and occasional frustrations.
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II. METHODS

A. Research Approach

To address the ambitious set of questions outlined in the
Goals section above, the research strategy was to collect
data from a variety of sources that would enable the project
to assess student learning and to begin to understand the
many and varied issues involved in the implementation of a
guided inquiry approach using the SUPPOSER. Critical to the
study were data on:

-- student skills at the beginning and the end of the
school year,

~-- the evolution of student skills and understanding
over the course of the year,

-- the evolution of teacher performance and
understanding over the course of the year,

-- student and teacher perceptions.

The intent was to provide a description of the year’s
experience built from several kinds of data and perspectives,
providing a stronger basis for interpretation of both
learning and implementation issues.

Below we list data sources by area of research and then in
section II.C we describe the sources individually.

-- Implementation: Data on implementation of the guided
inquiry approach were collected from classroom
observations, teacher meetings, teacher interviews
and written reflections, and year-end student
interviews.

-- Student Learning: Data on student learning were

collected from classroom observations, student work
on problems, teacher meetings, teacher interviews and
written reflections, year-end student interviews, and
conjecture and argument tests.




B. The Intervention

1. PEDAGOGICAL GOALS AND ASSUMPTIONS

The rationale for teaching geometry as part of the standard
high school curriculum is twofold: 1) to teach students
about che mzasurement, properties, and relationships of
points, lines, angles, surfaces, and solids; and 2) to teach
students deductive reasoning by exposing them to classical
Euclidean geometry, the archetype deductive system. Most
geometry courses come up short on both counts.

The centerpiece of most geometry instruction is neither the
"stuff" of geometry nor deductive thinking, but the two
column geometric proof -- which in many respects seems to be
beyond the grasp of many students. Students cope by
memorizing theorems and proofs and come away from these
experiences with no understanding and appreciation of either
geometry or deductive reasoning and proof.

We argue that geometry instruction would be more effective
if, rather than teaching definitions and theorems as givens
and concentrating on proof. it were to give students an
opportunity to experiment with geometric shapes and elements,
to move from the particular to the general, and to make
conjectures before grappling with proofs. This approach to
geometry is absent from the "formal" secondary geometry
curriculum. It is more common and more accepted in the
"informal" geometry curriculum taught at lower grade levels
~-- in part because it is viewed as intuitive and lacking
rigor. This division of reasoning skills and the implied
hierarchy does not further the causes of geometry learning
and teaching or students’® development of reasoning skills.

We want to test the notion that by asking and enabling
students to "explore" geometry, they will become more engaged
in the subject matter, will approach the task of devising
proofs with greater motivation and understanding, will become
more skilled at inductive and deductive reasoning, and will
learn more geometry. With the infusion of inquiry skills and
a tool such as the GEOMETRIC SUPPOSER into geometry learning
and teaching such an approach is feasible.

The GEOMETRIC SUPPOSER (Schwartz and Yerushalmy, 1984) is a
series of microcomputer programs, each of which deals with a
family of geometric shapes (Triangles, Quadrilaterals,
Circles). The SUPPOSER allows users to make on tha computer
s 3301 any constructien that can be carried out with a
“t+adge and compass on a random shape or a shape of

A making. The program also includes suppasrting

28 with which users can make measurements on any

.n the construction, can make computations with those
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measurements, can rescale, and can return to previous shapes
with the same or different constructions. Perhaps most

y importantly, the SUPPOSER allows users to repeat
constructions as procedures on other shapes. With these
features, the SUPPOSER is a tool which enables students to
explore the properties of shapes and geometric elements and
to investigate whether the properties and consequences of a
given construction on a given shape are dependent on some
particular property of that shape, or if the result can be
generalized.

in our instructional approach which we call "guided
inquiry," the content of the curriculum is the same as a
standard geometry course with only minor variations in
sequencing. The goals are different. Rather than focussing
only on deductive reasoning and proof, the guided inquiry
approach calls for students to integrate inductive reasoning
with deductive reasoning and empirical work with conceptual
work in solving problems and devising proofs.

The pedagogy of guided inquiry can be differentiated from
both the traditional lecture format and from discovery
learning. While new material is often introduced by teacher
lecture as in traditional pedagogy, guided inquiry emphasizes
laboratery work and cless discussion in which students take a
more active and responsible role in the learning process.
During a lab period, students work, usually in pairs, on a
given task or problem. Discussion periods focus on the
sharing of student data, conjectures, and supporting
arguments generated from the lab work. 1In contrast to a
discovery approach, guided inquiry does not call for students
to discover every theorem in the year’s curriculum on their
own. In some cases, theorems are presented by the teacher
and students investigate problems related to these theorems
in the lab. In other cases, theorems are in fact brought to
light by students in the course of manipulating data and
making conjectures. Student inquiry is encouraged and aided
by teachers muedeling inquiry skills and supporting and
guiding investigation in the lab.

2. SETTING AND SAMPLE

Experimental Classes

The sample for the study was three high school geometry
classes in three different Boston area suburbs. The number
of students was 44 (22 males, 22 females; 18 freshmen, 18
sophomores, 2 juniors, 1 senior). One class was rated by the
school as an honors class; two classes were rated by their
schools as low level. Two of the teachers had more than
twelve years teaching experience; one had two years
experience.
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For more detailed descriptions of the three sites, see
section III.A.

Comparison Classes

At each site there was a comparison class. In contrast to
the experimental classes, the comparison classes were taught
primarily from the text with an approack that focused on
deductive reasoning and the two column proof. Comparison
classes were selected by school administrators to match the
SUPPOSER-using classes in ability and academic level. Since
the expectation was that the instructional style of SUPPOSER-
using teachers would change over the course of the year,
comparison classes were taught by other teachers.

3. ENTREE AND SUPPORT

We began discussions with school systems about participating
in the research in the spring of 1985, but it was not until
the middle of September that the last of the site
arrangements was completed. Identifying interested teachers
who had the support of mathematics department chairpersons
and principals, and who worked in schools which could provide
students with access to computers (average two students per
computer) as often as two or three periods per week was a
challenge. We did not provide hardware to schools for
instructional use.

Given the demands and extent of this study (entire school
year, as many as two class periods per week), teachers and
administrators expressed concerns about vhat students would
learn and how much of the curriculum would be covered. 1In
dealing with each school system, we assured the mathematics
department that participating students would cover the same
material as students in non-SUPPOSER geometry courses. From
the outset, we took the position that we had a responsibility
to the schools, the teachers, and the students and their
parents to make this experience as productive as possible for
each student and teacher.

Mid-September was a late start for a yearlong teaching
experiment. We put aside our original plans for a week of
training in August. We prepared a topic outline for the
year's curriculum (see Appendix A) paralleling the
traditional curriculum in content (with only one minor
variation in sequence) and we prepared problem sets geared to
the major topics in the curriculum (see Appendix A and
Yerushalmy and Houde (1987) for examples of problems and
projects). Each teacher received a computer for home use and
the SUPPOSER programs and was asked to explore the software
and problems on their own.
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The teachers met with the researchers three times in the

- evening (2 - 2 1/2 hours) during the first month. We then
assumed a regular meeting schedule, one eveniag approximately
every three weeks. The agenda for these meetings included:
teacher reports on the material covered since the last
meeting, where and how they and their students experienced
success or failure, sharing of suggestions and ideas, in-
depth examination of topics that were of common concern, and
plans and materials for future weeks.

In addition to these meetings, the most regular form of
advice and technical assistance came from members of the team
who functioned as classroom observers. In addition to
collecting data, the observer discussed the class or lab
session with the teacher and offered suggestions for dealing
with specific problems or geometric concepts, for using the
software more effectively, and for assisting students with
their work.

At the outset, we envisioned two intensive periods of
research and SUPPOSER use, each six to eight weeks in
duration. The plans called for the first period in the fall
to focus on how students collect data and make the transition
to conjecture. In the middle of the academic year, there
would be a less intensive period during which use of the
SUPPOSER would be at the teachers’® discretion. During the
spring, the focus would turn the transition from conjecture
to proof.

Data Sources

C.

In this section, we describe each source of data.

1. Classroom Observations: Each class. was observed
approximately once every three weeks from October through
mid-June. To ensure consistency of observation and
reporting, observers initially visited classrooms
together and in discussion developed an approach to
observation. To check perceptions, each wrote up his/her
observations of the same class, and then discussed the
individual reports. The observers Wrote reports on the
class following each visit. These reports were reviewed
regularly by the team and in response, were clarified or
elaborated. The two primary observers were the project
leader and researcher.

2. Student SUPPOSER Work: All written student work on
SUPPOSER problems was collected. Each student maintained
a three ring binder of his/her work and these materials

9



were collected and reviewed by teachers and then turned
over to other members of the research group.

3. Teacher Meetings: Notes were taken at each group
meeting and were shared with rarticipants for their
review.

4. Teacher Interviews (see Appendix B for questions):
Teachers were interviewed in January for their
perceptions of the experience to date. Questions asked
them to describe their experiences, their expectations,
the reactions of students, and their plans for the
remainder of the year.

5. Teacher Reflections: In January and in June, teachers
were asked to reflect on their experiences in writing
with little or no direction. The only suggestion was
that they write about issues that might be of interest to
other teachers considering this approach.

6. Student Interviews (see Appendix C for questions):
Eleven students from the three classes were interviewed
in June. Questions were asked about using the SUPPOSER,
the experience of learning and being taught with the
SUPPOSER, what they would do differently if they were
teaching with this approach, and whether this approach
had any impact on their thinking or work outside
geometry.

7. Generalization/Conjecture Tests (see Appendix D): A
pretest and a posttest were designed to assess students”
ability to make conjectures or general statements (see
Yerushalmy 1985 for complete details). The tests present
studente with problems that are composed of a statement
and diagram(s) that illustrate the statement. Problems
on the tests are posed as data formulations and abstract
formulations. In data formulations, the statement
contains data and is designed to provide insight into
students’ ability to generalize from data. In the
abstract formulations, the statement contains a
generalization and is designed to provide insights into
students” ability to derive "higher level
generalizations” from the statements given in the
problem. The tests ask students to "write significant
connected statements” in response to the problem. While
it is important to note what students consider to be
"significant" and "connected" statements, the variable of
greatest interest is the level of generality of the
conjectures that students generate. These tests were
administered to experimental and comparison classes.

8. Argument/Proof Test (see Appendix I): Designed to
assess students’ ability to produce proofs for true

10
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statements (see Yerushalmy 1985 for details), this test
presents three problems with two true statements
accompanied by diagrams. It asks students to provide
arguments or support for one of the two statements.
Students are free to choose whichever statement they find
more convincing. One problem contained statements which
were familiar to all students and had been studied in
class. Statements in the second were generalizations of
material studied by the students. The third problem
introduced unfamiliar material. For each problem, the
focus was on the type of proof provided by the students.
Are there proofs? Are they well done? Are they formal
or informal in style? This test was administered to the
experimental classes and to two of the comparison classes
at the end of the school year.

D. Data Analysis

Since the results of the study are reported in terms of the
different perspectives on the experience (the classroom, the
teacher, the student, and the pretests and posttests), this
section describes the procedures for data analysis in terms
of the perspectives.

1. The Classroom Experience: This section is based on
observers’ classroom observations, analysis of student
written work, teacher notes, and minutes of teacher
meetings. The content of the observations was analyzed
and themes were identified for each classroom. The other
sources were analyzed for corroborating, contradictory,
or illuminating data. As the themes were elaborated for
each class, class approaches and style were characterized
and contrasted with each other. The main theme in the
three classroom descriptions is the difficulties students
experienced making conjectures and the response of the
teachers to these difficulties. Other themes include:
skill in using the SUPPOSER, evolution of the lab and
classroom sessions, working with visual data, attention
to proof and the year-end projects done by students.

2. Teacher Perspective: Teacher meeting notes were
summarized by issue (reports on classroom experience,

introduction of problems, curriculum and teaching) and by
date. These summaries were then analyzed to identify
significant teacher concerns. Teachers’ writing are
presented as written with only minor typographical
corrections. Midyear teacher interviews were analyzed by
question.

11




3. Student Perspective: Year-end interviews with
students were analyzed by question and across classes.

4. Tests: Results compare the performance of
experimental and comparison class students. Chi-square
analyses were performed to check for significant
differences between these groups. The differences that
were found were then interpreted in light of all of the
other types of data reported earlier.

12
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III. RESULTS

The results of the study reported. here are organized in terms
of the classroom perspective, the teacher perspective, the
student perspective, and the conjecture and argument tests.
This framework and order is designed to provide a coherent
portrait of the experience of each of the classes, and at the
same time, o offer a context in which to consider the
perspectives of the key participants, teachers and students,
and the performanze of experimental and comparison classes on
the tests. 1In the conclusion, these resuits will be
integrated in terms of the research areas (implementation and
student learning) and the research questions.®

A. The Classroom Experience

This section describes each of three classes and their
experiences with the SUPPOSER over the course of the year.
The descriptions are drawn from classroom observations,
student work, and teachers’ meetings and notes. Within the
description of each class, the focus is on the evolution of
key instructional elements, teacher skills, and student
skills over the course of the year. These key elements
include: conjecture-making, SUPPOSER use, the lab
experience, classroom discussion, working with visual data,
proof, and year-end projects. 1in addition, these
descriptions are designed to provide a setting for other
results. Each description concludes with a brief
characterization of the year’s experience in the class.

1. COUNTRYTOWN

Background

The class was made up of eighteen students: twelve
sophomores, five juniors, and one senior; eight males and ten

The results of two other facets of this study,
student ability to manipulate visual images and an
analysis of factors involved in the structuring and
posing of problems, will be alluded to in the
conclusion and summary c¢f this report and will be
reported in detail in two papers which are now in
preparation.

13
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females. Two of the students were taking geometry for the
second time. This class was considered the lowest level
geometry class in the school.

This class only met four times a week, although each period
was fifty two minutes long.

The computer lab was two doors away from the classroom.
Computers were on desks in a horseshoe arrangement in the
center of the room with desks around the perimeter. Students
were able to use the lab at any time by getting the key from
a teacher.

The teacher had two years of experience teaching mathematics
at the high school level and was a product of a masters
program in mathematics, science, technolcgy and education
which combined teaching in the public schools with experience
in industry.

Unlike the other teachers, the Countrytown teacher did not
hand out a textbook. He preferred to photocopy packets of
homework problems from a number of texts for a period of a
week or two.

On the midyear exam, the class scored better than some of the
other geometry classes taught by the same teacher. At the
end of the year, they did just as well as these other
classes.

Use of the SUPPOSER

At the beginning of the year, the teacher in Countrytown
reported being concerned that his students would not take the
SUPPOSER and the lab periods seriously; the students in
Countrytown thought that finding patterns of numbers in their
data was the goal of the lab. Both of these initial
perceptions changed dramatically over the course of the year.

In October and November, students concentrated only on
measurements and numerical data and were not concerned with
the geometric relations that these numbers represented. They
were not selective about what they measured. Oftern they
worked on a trial and error basis. They did not work
systematically with variables and keep track of the data.
For example, one problem asked students to draw the median
from each vertex in each kind of triangle and to look at the
triangles created by the construction. Students had
difficulty sorting out which properties were related to the
vertex from which the median was drawn and which related to
the triangle type. 1In the end, the teacher wrote out th:
problem with a page for each triangle, thus isolating tha
variables and providing a structure for organizing the data
and its collection.

14
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Students also seemed to be held captive by the particular
diagram presented in a problem. In the lab, we observed that
students® first step in solving a problem was to search for a
triangle on the computer screen that matched t .e triangle on
the worksheet in shape and orientation. If ai. exact match
could not be found, students might rotate the paper until the
orientations matched.

Class discussions got off the ground slowly. 1Initially, the
discussions centered on the data and its relationship to
conjectures. To make the discussions run more smoothly, the
teacher prepared summary sheets of student data and
conjectures.

In November, the focus moved gradually to generating
convincing arguments for conjectures. The students in this
class had weak algebra backgrounds. Early on when the
teacher based many of the arguments and proofs on algebraic
manipulations, the students had difficulty following the
a2lgebra and therefore the arguments. A lack of mastery and
skill from previous courses confounded their first experience
with informal arguments.

By midyear, we witnessed considerable growth and development
in the lab and in class discussions. The differences were
striking. Students were no longer bound by diagrams; they
were now able “o visualize and manipulate relationships in
their heads. 1In discussions, they were able to look at a
diagram and imagin transformations without requiring actual
drawings.

For example, the class was working with a drawing which
included two parwllel lines, BC and EF.

c

The students were not told that the lines were parallel, they
had not yet conjectured that they were parallel, and with the
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knowladce they had at that point in the year, they could not
prove that these lines were parallel.

It was however a legitimate and verifiable conjecture. AD
was an altitude and thus perpendicular to BC. One student
argued that AD was also perpendicular to EF, implying that EF
and BC were parallel, but not mentioning that fact. Another
student argued that "it doesn’t work if EF is tilted". 1In
other words, it doesn’t work if EF is not parallel to BC.
This assertion was not based on the way the diagram looked.
The student was manipulating the diagram and considering an
alternative in her "mind’s cy=."

In November, two cclumn proofs became a part of the class
discussions and the teacher asxked students for their
assistance in writing out thrir informal arguments in this
form. Students began > call for proofs when a proof was in
order. They knew the difference between verifying a
conjecture and a proor, alilhougl they would sometimes use the
word "proof" for botl: types of arguments.

Starting in Ncvember, the teacher made regular use of visual
aids and concrete models in class. Transparencies and an
overhead projector were a fixture in discussions. He bhrought
some cardboard trianglss, a weight, and some string for the
discussion of altitudes, coffee stirrers for diagonals in
quadrilaterals, and "Miras" to clarify the idea of
reflection. At times, even compass and straightedge made an
appearance and students worted on constructions at their
desks as part of the class discussions.

By December, students had yet to use the REPEAT key on the
SUPPOSER as a strategy for thinking about a problem (seeing
how a given construction behaves nn other triangles) before
making measurements. Howe rer, when the teacher suggested +to
some students that this might be a prolitable strategy, many
students picked it up quickly. They became sensitive to and
interested in visual clues that appeared as a construction
was repeated on different types of t.iangles.

In the lab, the style of work changed. Students were
beginning to approach problems systematically. For example,
they were able to articulate when it wa:, a gnod strategy to
begin their work in an equilateral triangle, and not in an
acute triangle. The teacher had always been meticulor's in
making his drawings in class; now many students practiced the
same care in their work. Titey buegan "o uge compass and
straightedge to help record their data from the SUPPOSER
screen and to produce work that was neat and easy to read.

The teacher reported that <«tudents considered the lab and
class discussions about their ccijectures as both harsd work
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and fun. He felt that when he did algebraic textbook
problems in class students showed less interest. They did
not find these problems as difficult or as exciting, which
may have been in part thé byproduct of *heir dislike of
algebra.

At the end of December, expectations changed. Lab problems
now demanded proof before class discussion, not just a
convincing argument. Finding conjectures was no longer
considered difficult ner was it sufficient. r'roof was
important. Data receded into the background.

Throughout the year, the teacher made extensive comments on
student papers. Now he wrote, "7Zou must have all three:
data, conjectures, and proof."

In March, expectations changed again. The teacher gave out
an assignment that ne callcd a "project." The content of the
project was reflections. With these larger problems,
students had to work .1 the lab on their own for a longer
period of time and to write up their work neatly and hand it
in before the c¢lass discussion Instructions were explicit:
data was not import=ant; conjactures and proofs, where
possible were the focus.

“hile the studeni.s’ lab work focussed on the projects for
thre= or four days runni.g, they still had homework. Their
homework did not directly relate to the work in the lab. It
consistced of sheets of problems photocopied from a textbook
on the tepic of special right triangles.

The students took the first project very seriously and
producec. good work. There were many conjectures, but few
students came up with proofs. However, this may have been
due to *he problem and its presentation. The problem
emphs.sized making constructiors and did not present a clear
de€inition of & reflec-tion and so, students lacked the
necessary tools to make formal p roofs.

In general, March and April lab periods were extremely
productive. &tudents made predictions about data and
outcomes bhefore making measurements. They worked hard
outside of class, cominy into discussions ready to prove
simple conjectures. Many students, even the quiet ones,
participated in proving these conjectures. On occasion,
students came up with differeni proofs. When a problem and a
proof were more complex, the teaciizr stepped through the
proof Jith the help of his st :ents.

In May, the teacher gave students a second project. He

ancouraged students (o coll.ct only a minimum amount of data
and to report t} se dats that were essential. He asked for a
list of conjeutures frum each student «~fter the lab work. A
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week after collecting the conjectures, students turned in
proofs. Students worked diligently and produced in-depth
reports. Every student produced at least three proofs. Some
of the proofs were complicated, but the majority of the
proofs were simple and small in scale. Students still had
difficulty getting an involved formal proof off the ground
and giving formal written form to ideas that were voiced
eagily and informally in class discussion.

Conclusion

On the whole, students in this class were not able to prove
general results, or to generalize their conjectures from
triangles to quadrilaterals. Yet at year’s end, their
inquiry was systematic and thorough, they were able to work
on large scale problems, to generate conjectures, and to
prove some of their conjectures.

2. RIVERTOWN

Background

The class was composed of eighteen students: eleven males
and seven females, all freshmen. The school considered this
class an honors class. The teacher did not consider them to
be "honors" caliber.

The class met during the last period of the day. The
computer lab was two floors below the regular classroom. The
computers were arranged along the walls and there were no
desks or other work surfaces in the room. A teacher had to
open the computer lab and be pressnt for students to use the
lab. The teacher had twelve years experience, teaching all
levels and subjects in high school mathematics, and held an
undergraduate degree in mathematics and an M.A.T.

Use of the SUPPOSER

In the beginning of the year, the experience of students in
Rivertown paralleled that of students in Countrytown. They,
too, focused on numerical data, giving little thought to the
context or the diagram, were not selective about what they
measured, and worked on a trial and error basis. However,
they had a more difficult time producing conjectures than the
students in Countrytown. The teacher was convinced that this
difficulty stemmed from an inability to see patterns in the
numerical data. So she carefully structured their inquiry,
rewriting problems, providing explicit directions and charts
for recording data. She hoped that this structured approach
would make patterns in the data apparent and lead students to
conjectures.
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During the early part of the year, this produced more
complete and better organized numerical data, but no
improvement in conjecturing. Students continued to focus on
the numbers and not on the geometric relationships.

Class discussions also started off slowly. The problem
seemed to be in part how to blend student data into the
discussion. (Unless the characteristics of a triangle are
specified (SSS, SAS, ASA), the SUPPOSER will draw a random
acute, obtuse, right, isosceles, or equilateral triangle
after the student identifies the type of triangle to be
drawn. So each student or pair of students, though working
on thie same problem, is working on a unique triangle and
brings a unique set of data from the lab tc the class
discussion.) Asking students as a class to reason with their
data turned out to be awkward and difficult. The teacher
took alternative paths -- discussion without reference to
student data or a dialogue with a single student.

As a result, the first discussion of the vear looked a lot
like a traditional geometry class. The teacher introduced
formal proofs for the students’ conjectures. Later in the
period, she took those proven conjectures and she posed
numerical problems based on the relationships established in
the proofs. These were similar to those found in a textbook.
An example of a typical textbook problem is:

If L ACB is 51 degrees and the opposite exterior angle is
112 degrees, what is the size of L ABC?

Recognizing that such a strategy inhibited student discussion
and conjecture making, she cut back on the amount of formal
proof in the following sessions. The next discussion
centered on medians in right triangles. Students
participated enthusiastically. They arrived at conjectures
that were true for the right angle vertex and not true for
the other vertices. They also developed weparate conjectures
for an isosceles right triangle.

As the year rolled on, the links between numerical data and
the geometric construction, or the visual data, were never
forged. Conjectures, for the most part, continued to focus
on numerical relationships. Students did not seem to make
the connection between formal proof and the conjectures
developed in the lab. They did not see the potential role
and value of deductive/textbook knowledge in the lab. In the
lab, students were convinced that if the numerical data
supported the cc .jecture, that proved the conjecture. In
class, proof meant a two column proof. One day a quiz was
given in the lab and it asked for proofs. At first the
students were stymied. When the teacher explained that they
were being asked to do proofs "like in class," they
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immediately produced two column proofs. The difference: and
relationships between class and lab, and among data, .
conjecture, and proof were never clear.

In discussions, students did not seem tc¢ benefit from the
work or insights of the rest of the class. The discussions
that followed work in the lab were not occasions for
community inquiry.

How to share student data and how to verify conjectures based
on data continued to be an issue. During one discussion on
ratios in similar triangles, the teacher had students regroup
to sit next to their lab partners to make it easier to link
conjectures to specific data. They were then asked to
manipulate their data and verify the conjectures that had
been discussed. Some students hr-d difficulty manipulal.nag
the ratios; some were able to verify the conjectur=s. Wwith
the students working in twos, it was difficult for the
teacher to help the class as a whole and there was not enoucgh
time for her to work with each pair.

In the lab, students had difficulty understanding
instructions and get?ing down to work. The teacher spent a
lot of time going over instructions, but it seemed to have
little effect. During the lab, many students hac¢ their hands
up, constantly calling for the teacher’s attention. This
detracted from the amuunt of work students accomplished in
the lab and was hard on the teacher.

As in Countrytown, students did not discover the use of the
REPEAT key. When its use was demonstrated, they too
incorporated it into their lab work.

At this point, students did what they were asked to do, but
no more. When asked to put numbers in a table, they
complied. On the whole, they limited their inquiry to the
numerical information requested in the problem. On one
problem, after reading the directions, students had no idea
of what to do, so they turned to the back of the packet of
papers, found a chart, and meazsured the elements listed on
that chart. They did not go on to make conjectures or
proofs.

During the months of March and April, w.ien teachers were
given more discretion about how and when to use the SUPPOSER,
this class used the SUPPOSER infrequently. They used the
SUPPOSER to investigate similar triangles, but did very
little work with the SUPPOSER on quadrilaterals or circles.

At the end of the year, the teacher gave the students a
larger scale problem, "a project," to work on. As
preparation for this problem, the teacher wrote explicit
instructions that detailed a method for approaching a larger
problem. She asked students to rewrite the problem in their




own words and to outline the way in which they planned to
solve it before beginning the problem. The teacher from
Countrytown borrowed this approach as well. Classes in
Rivertown and Countrytown worked on the same project.

Students practiced this structured approach on a smaller
problem before tackling the larger problem. Having collected
their data during four lab periods, they were given time to
make conjectures from the data. A week after handing in
their conjectures, they were asked to produce proofs for
three conjectures. An "A" student paper from an honors
class (not in the study) in Countrytown was shared with the
students as a model of excellent work. To further motivate
students, the work on this large problem counted as the
equivalent of two test scores con students® final grades.

After two weeks without a lab session, students seemed to
enjoy returning to the lab. They worked hard on the problem.
In the lab this time, there were few questions for the
teacher. She was able to circulate around the room at a more
leisurely pace. For the first time in the lab, she felt that
she had the time and the opportunity to answer student
questions and monitor their progress. The students collected
large amounts of numerical data and collected it neatly.
They used compass, straightedge, and a circle drawing tool to
" record their diagrams neatly. Many of them worked on the
problem after school or during their free periods. They
traded telephone numbers and worked at home. There was an
element of excitement in the air. One student remarked that
the problem was exciting because there was a lot to work on
and write about. She explained that she just had to figure
out which ideas were important and which were trivial and
therefore not good material for conjectures or further work
-and writing.

With these broblems, students exhibited new skills in the
lab. Some students paid careful attention to visual data and
noticed quadrilaterals in their constructions as well as
triangles. One student, using deductive knowledge to check
her measurements, noticed that she had mistaken an area
measurement for an angle measurement. She presented an
argument that showed why that measure could not possibly be
the measure of the angle.

Conclusion

In general, students in Rivertown had difficulty dealing with
a lack of structure and with independent work. 1In an effort
to provide students with structure and clarity, the teacher
focussed their attention on numbers and tables, not on
figures and geometry. Perhaps this emphasis on the numerical
data prevented them from looking at patterns of visual data,
an alternative route to conjecture which was effective in
other classes. Students had difficulty making the connection
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between visual and numerical data and the inductive work with
the SUPPOSER was not well integrated with the deductive work
in the classroom. However, by the end of the year there was
some improvement in these two areas as evidenced by the
project work.

3. TECHTOWN

Background

This class was composed of eight students: six sophomores
and two juniors, three males and five females. It was
considered a geometry class of low ability. The class met in
the computer laboratory during the middle of the day. The
computers were against the walls and the rest of the room was
organized and furnished as a regular classroom with desks in
rows. The teacher had over sixteen years experience teaching
math at the middle and secondary school levels including five
years in England. She held an undergraduate degree in
mathematics and an M.A. in mathematics and science education.
She was a member of the EDC-sponsored GEOMETRIC SUPPOSER
Users” Group during the 1984-1985 school year.

Use of the SUPPOSER

Like the students in Rivertown and Countrytown, the students
in Techtown were not able to make conjectures on their own
from data at the beginning of the year. They concentrated on
numnbers and not on geometric relationships. For example,
they seemed not to notice changes in visual data. In their
diagrams, they often drew what they thought was or should be
true, rather than copying accurately what appeared on the
screen. When working on the definition of altitudes, one
student presented the following drawing as evidence to
support her definition. She claimed that her drawing was an
accurate copy from the screen of the SUPPOSER.

Her definition of an altitude was "a line in a triangle that
makes ninety degrees."
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The Techtown teacher reacted differently to such
misconceptions, which surfaced in all three classes. 1In
discussions, she took the students” data and helped them make
generalizations from their data during class time. She used
several techniques to deal with the problem of organizing,
sharing, and discussing student data. She had students
collect their data on ditto sheets and then ran off copies
before the class discussions. At times, she recorded data on
an overhead so that everyone could see her work and then
demonstrated how she moved from the data to conjectures.
During some classes she worked with a computer and a large
monitor at the front of the class. One student sat at the
keyboard, creating the constructions and making the
measurements that arose during the discussion. If she felt
that all of the students needed to do more work on their own,
she simply stopped, sent them off to work on the computers
and reconvened the class when they finished their
investigations.

Discussions in Techtown were productive from the outset.
This was no doubt in part a function of the teacher’s
previous work with SUPPOSER and the size of the class. Many
students participated. Together, students and teacher made
conjectures, discussed criteria for "good" conjectures,
worked on convincing arguments, and taliked about what "good"
and "suspicious" data were. In these discussions, students
listened attentively to one another.

Another feature of these discussions was the number of visual
arguments that were considered. To show that a student’s
definition was inadequate, the teacher made a drawing that
conformed to the definition, highlighting its inadequacy. In
one case, the student quickly saw that the words of the
definition did not conform to her intent or to the figures in
her head. She was then able to modify ler definition
appropriately. The teacher was constantly modeling an
approach that made apparent the relationship between
numerical and visual data. To reinforce this, a test early
in the year contained a number of questions in which students
were asked to define a term with a diagram rather than a
written definition.

In the lab, students were encouraged to collect their data
and write them on drawings of the figures that appeared on
the screen. Most of the students did not use tables or
charts.

As the year progressed, the teacher felt that the students
needed less direction in the lab. She used the lab time as
an opportunity to work with students individually on their
textbook homework or on topics in which they seemed to need
additional help. 1If students on the computers did need
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assistance, she stopped the one-on-one work and attended to
the 1lab. -

Students also collected less data in the lab. They tried to
develop conjectures first and used data to check their -
conjectures. In that sense, they were more systematic.
Students were free to develop their own formats for
collecting data and although this might have created
problems, the recording of data was very good. One student
recorded in a mosaic fashion, placing data from each triangle
in or around the drawing of the triangle. Each triangle and
its data were then enclosed by a circle. Another student
recorded data in lists and a third collected very little data
once she had a conjecture.

In talking with the teacher about the students® abilities to
devise proofs, she indicated that the students could produce
proofs if they were led in that direction.

During the months of February, March and April, the class did
less individual work in the lab. They investigated as a
group under the direction of the teacher. Students
participated actively in these discussions. Discussions
focussed on examples prepsred by the teacher, creating formal
proofs for conjectures, and conversations about necessary and
sufficient conditions and counter arguments. The topics
covered were similarity, quadrilaterals and circles.

Visual data continued to be emphasized. Students were more
careful about their drawings. In one discussion, a student
was asked to go to the board to draw a parallelogram. She
drew a rectangle with the short legs horizontal. Students
pointed out that her diagram was a parallelogram, but that it
was not a general one and therefore not appropriate for the
discussion. In a later discussion, a studen: was to go to
the board to draw a trapezoid from her data. Her drawing
looked like a right trapezoid. When asked about her drawing,
she responded that her drawing was to illustrate her data and
that the angle in this case was 94 degrees. With this
emphasis on visual data, it seems that some of the students
were aware of the differences between a drawing and a
schematic diagram and when each was appropriate.

When students worked on their own in the lab, their
conjecture making and data collecting were integrated. They
used their ideas to decide what to measure and what not to
measure.

In May, the teacher gave students a set of three projects and
allowed them to choose among them. One was similar to the
first project assigned in Rivertown and Countrytown. The
second focussed on points of concurrence and the third asked




for methods to create similar triangles inside a larger
triangle.

Techtown students were not provided with detailed
instructions and were not asked to rephrase the question or
to outline their approach to the problem.

The students had many questions about what they were supposed
to do. The teacher clarified the project for each stud«nt or
pair of students. The results were uneven. Some students
worked towards generalizations, while others had difficulty
getting started. Some were able to formalize their
conjectures and others were not. All of the students were
asked to provide informal proofs or an outline of a formal
proof. Many were able to do so.

Conclusion

In Techtown, the teacher responded to the class’ initial
difficulties with data and conjecture making with group work
and modelling. She exposed students to effective
mathematical thinking skills and problem-solving strategies.
She focussed on visual skills, logical arguments, and the
criteria for doing good inductive work. Students
participated actively in these discussions. While they got
off to a slow start and continued to experience some trouble
in the initial stages of tackling a problem, by the end of
the year they were able to generate conjectures and to prove
some of those conjectures in the context of a large problem.
They had internalized some of the strategies that had been
modelled for them.

B. Teacher Perspective

To provide insights into the teacher perspective on the
experience, we present in this section results from two
research activities: an overview of monthly teacher meetings
and efforts to capture teachers’ reflections including mid-
year and year-end written statements and a report of mid-year
interviews.

1. TEACHER MEETINGS
During the school year, the research team met every three
weeks or so with the teachers. Below are first an overview

of the content and tone of the meetings and then an outline
of key issues that surfaced during the sessions.
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The agenda for each meeting was established at each session,
but in general centered on three items: teacher reports on
their experiences since the previous session, discussion of
problems and problem sets, and discussion of curriculum and
teaching issues.

Reporting on Class Work

Every meeting opened with a round robin reporting by the
teachers on their experiences with some additional commentary
by members of the team who had visited the classes. Reported
were triumphs and failures: when a class soared with a
problem, when and how similarity went over like a lead
balloon, how the pep rally preempted geometry, and when the
kids showed up in the lab when they were supposed to be in
the classroom. The three teachers covered the curriculum at
about the same rate. People listened carefully and learned
from each other. The spirit of the meetings was consistently
open, frank, and supportive.

Introducing Problem Sets

The research team prepared problem sets which addressed the
major topics in the geometry curriculum and followed the
sequence in the most commonly used texts. The expectation
was that classes would go through the sets in two or three
weeks, but it quickly became apparent that these classes were
moving more slowly and that there were many more problems in
a set than teachers and students could handle. It was clear
that teachers had to pick and choose.

Problem sets were distributed about a month before they were
scheduled to be used, thinking that teachers would have
plenty of time to work on them. In fact this was unrealistic
given the day-to-day demands of teaching and teachers ended
up reading the problems just before the meeting. So the
research team presented the intent and the potential for each
problem and the teachers commented. The problems were
discussed again when they were used in class. These
discussions were most productive when teachers were covering
the same material in their classes (even when they were using
different problems). When the teachers were covering
different material, conversation was limited.

There was always a computer available to try out the problems
when they were distributed, but rarely was it used during the
meetings. People preferred to look at the problems and

solve them in discussion, on paper, without the computer.

The computer was used only to demonstrate one of the SUPPOSER
procedures or to introduce another disk, e.g., Circles, in
the SUPPOSER series.
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At the outset, teachers used the problems as they were
written. Late in the fall, we started using the meeting as
an occasion to rewrite problems as a group, and then teachers
began redrafting problems on their own. Teachers traded
problems and formats at the meetings, but chose not to share
homework problems and worksheets, or the task of grading.

Discussing Curriculum and Teaching Issues

Using the SUPPOSER posed a variety of challenges for the
teachers. They had to teach geometry differently, to use
class time differently, to adapt existing materials and to
design new materials and strategies for use with the
SUPPOSER, and to change their approaches to student
evaluation and homework. The experience also gave them new
perspectives on geometry and how to teach geometry.
Summarized below are five key issues and two observations
that were raised in the context of the meetirgys.

The Structure of Problems: In these meetings, the issue
that came up time and again was the structure of
problems. One teacher explained that he was not able to
define for the students what was required and was not
sure when and what to collect from his students
(10/9/85). The group struggled with what constituted a
good SUPPOSER problem and how to structure SUPPOSER
problems. There seemed to be a fine line between
providing students with adequate guidance and providing
so much direction that the task lost all meaning.®

When they rewrote problems, teachers tended to add
structure to problems and to be more directive. This was
particularly true when they were concerned that the
students were not making conjectures.

Teachers reported that construction problems (i.e.,
problems whose outcome was a construction rather than a
conjecture) were very successful. These problems
elicited a good deal of quality student work and were
popular among the students.

Curriculum Coverage: A second concern was whether there
was sufficient time to cover all the content in the
geometry syllabus. Teaching with the SUPPOSER in a
guided inquiry approach requires more time *han a lecture
format. Student investigation in the lab and class
review of lab work are time-consuming. Also, a more

The structure of problems and the construction
problem phenomenon is discussed in Yerushalmy and
Chazan (1987) and is analyzed in detail in a paper on
problem posing that is now in preparation
(Yerushalmy, Chazan, and Gordon 1987.)
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open-ended approach which invites in-depth study of any
topic is likely to take longer. Since clasz time is -
limited, all of these demands placed pressure on
teachers. One approach to coping with these pressures is
to be a good manager of instruction -- having well-
defined objectives in posing any problem and an efficient
and effective strategy for managing the collection,
collation, and discussion of diverse student data and
conjectures. Another response is to work on fewer
SUPPOSER problem=. In the end, all classes covered
approximately the same material as their counterparts who
did not use the SUPPOSER. Some of the teachers indicated
to us and to their students that they rushed through the
material at the close of the school year. (1/15/86,
5/28/86)

Similarity: All teachers reported that the concept of
similarity was the most difficult in their geometry
curriculum. Students did not seem to understand
proportions, correspondence or the ratios in right
triangles. Teachers and the research team developed a
variety of approaches and problems, but this is one E

concept where the use of the SUPPOSEP did not produce
greater student understanding.

Integrating Lab and Class Experiences: This issue has
several elements. Teachers reported that they, along i

with their students, sometimes found it difficult to ¢o

back and forth between lab and classroom, SUPPOSER and

textbook, and inductive and deductive work. One teacher y
related the story of a student conjecturing

(inappropriately) on a cut and dried homework problem. ’
Another teacher tried tc do a textbook problem while in .

the lab and the kids aidn’t want to dc it unless they
were in the classroom.

Teachers also found it difficult to communicate to
studerts the relationship between inductive and deductive
work, i.e., using deductive knowledge gained in class to
guide and to enrich exploration with the SUPPOSER, and
bringing conjectures developed in the lab back to the
classroom for prcof.

This issue has a physical manifestation in the separation
of the lab from the classroom in two of the sites. When
the computers are not in the' class, planning and
scheduling class time takes on greater significance and
integrating the instructional experiences seems to be a
more difficult task.

Homework: Another issue related to the connection
between classroom and lab sessions is that of homework.
Teachers found that with the additicnal burdens of lab
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and discussion periods they were not able to keep on top o:
student assignrents and review of student Lcmework. They
were concernad that students interpreted this to mcan that
homework was not important and therefore fewer studerts did
the homework.

Discussions ¢l lab work and discussion of homework
competed for class time. While teachers felt that lab
work did not get adequat2 attention and discussion,
students in some cases felt their homework was being
ignored. (1/22/85)

Grading: orading student work on the SUPPOSER was a
complex issue. Setting and communicating appropriate
expectations for teachers and students was very tricky.
Teachers accustomed to one right answer found grading
SUPPOSTR papers somewhat arbitrary. The suggestion to
give two grades, one for data and conjectures and one for
proofs, was helpful, but did not »nrovide sufficient
direction. Elaborate schemes would be difficult to
explai.. to students. So when teachers wanted to define a
standard for student work, they posted a copy of
exemplary student work on a project from an honors class
(not in the study).

Teachers were also sager to test their students on the
kinde of tasks that they vere doing in the lab. This
seemed tc be related to two concerns: it s=2emed unfair
to evaluate their students on the basis of standard
geometry tests alone &1d it was important to be able to
test for SUFPPOSER skills. 1In eash of the classes, there
was at least one quiz or test that involved use of the
computers. In some of the classes, teachers made an
effort to create SUPPOSER-like problems for papexr and
pencil exams.

2. TEACHER RETLECTIONS

To capture teachers’ p:rceptions directly, the team asked the
three tezchers to Jrite down impressions of their experience
with the SUPPOSER and the 2zxperiences of their students.

This writing took place in January, half way tnrough the
school year, and again in June, at the end of school. 1In
addition, one member of the resear.n group interviewed the
teachers in January. To provide chronological contiiauity in
this section, the order of material is January teacher
writings, Jsnuary interviews, and June writings. The
teachers’ written impressions hrtave not been edited.
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January Teacher Writings

Countrytown

I found working with the SUPPOSER challenging, stimulating,
and sometimes frustrating. I have tried¢ to carry my personal
enthusiasm for geometry and th¢ exploratory possibiliti-=s
available with the SUPPOSER into the class. Overall
students’” reactions have been mixed. For example, one
student enjoys using the SUPPOSER to build convincing
arguments for class discussion. Another enjoys the
independence of working on her own. Other studerits have
expressed concern about being used as "guinea pigs" in an
"experimental" program. In general, student response seems
to be dependent on their ability to experience success with
the SUPPOSER as a tool of geometry. Those students who feel
comfortable with mathematics are more apt to respond
positively to the use of the SUPPOSER. I feel some students
are confused by the lack of structure evident in a
traditional geometry course. The flexibility needed to work
with *he software sometimes creates confusion and ultimately
results in a struggle between teacher and student. I find
the most effective and enjoyable classes to be those in which
we can "lay back" a bit, discuss lab work, and relate it to
outside "book" assignments. However, it is equally important
to reinforce structure and bring the class together (e.g., at
the conclusion of a unit).

In sum, I am anxious to begin the second half of the school
year using my experience with the SUPPOSER to improve
classroom activity. I plan to write more lab material that
is tailored to the needs of my students and to more
effectively coordinate lab, class, and outside assignments.

Rivertown

Working with the SUPPOSER, I°'ve come to the conclusion that
students need a considerable amount of direction before
attacking the problems. They need time in the classroom
acquiring

1) the basic definitions, techniques, and ideas that
will be needed in the unit,

2) an outline of the objectives of the unit to be
investigated,
3) rather precise directions -- step by step procedure

and format to be used in recording the data and
making conjectures (almost a model).

Most students have not been able to read the directions, have
them explained, and then understand their responsibility.
More often than not, each pair needs individual instruction.
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Although students finally may ~»me to some conclusions from
their data, they seem to lose something in the transition
from the material acquired from t!.= SUPPOSER and the
application of these concepts. ‘“hey s*ill need a great deal
of practice and additional explanatic. 3. . would have
thought that the visual experience would have been more
impressive and meaningful.

On the other hand, students working with the ZUFPPOSER seem to
be more retaxed and more willing to explore in collecting
data. Nevertheless, they are still not wiliing to conjecture
‘if they don’t think that it’s correct. 1In general, students
seem to enjoy the lab more than the classroom. Partly, this
is due to their freedom and apparent sense of
non-accountability.

Techtown

Students using the SUPPOSER program are more vocal when they
do not understand a concept or a problem. This may bring the
class to a temporary grinding halt, as happened when we were
exploring the propcrtions formed by the altitude from the
right angle of a right triangle. Stuvdents could not "see"
the similarity between the large triangle and the two smaller
triangles because some turning and flipping was necessary tc
bring all thr:e triangles to the same crientation. A day
later, after cutting, flipping, and matching, students seemed
satisfied that the triangles were indeed "same shape"
similar, but still had trouble formulating proportions in the
original diagram. Several students were still hazy about the
notions of corresponding sides and of ratio, but they were
willing to engage in simpler activities using ratio and to
struggle until they were satisfied that they could derive the
propertions themselves.

I do not think that this process would have occurred in a
traditional geometry classroom. In such a classroom, I
beliove, students act as if the teacher "owns" the theorem or
formula. They are able to do a reasonable job in getting the
correct answer to textbook problems by using a rote method of
copying the teacher’s model. However, in average level
classes, there is little understanding, and little long-term
retention. Topics appear to students to be a collection of
isolated and random results conjured up by teacher or text.
In SUPPOSER classes, where students have been encouraged to
look for patterns and to formulate conjectures, they are more
active, even in teacher-directed lessons. The process of
coming to some understanding beyond the rote level of
"getting the right answer" is time consuming and sometimes
uncomfortable, but I believe that it is valuable.

After work with the altitude in a right triangle, students
went on to tackle right triangle trigonometry. They used the
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SUPPOSER to rescale a right triangle and to check that the
ratios remained constant and matched those in the table in -
the back of their text. One student remained confused and
could not choose the appropriate ratio to use in a numerical
problem. Other students joined in clarifying and rephrasing
an explanation for her. It seemed that there was a consensus
that it was important that she understand what she was doing.
There were no complaints and no ridicule. I am happy that we
have a class in which students feel free to express their
doubts and difficulties, and in which other students feel
comfortable when they jump in and offer help.

Mid-yvear Teacher Interviews

In these interviews, the teachers were asked to reflect on
their first four months using the SUPPOSER, their
experiences, their expectations, the reactions of their
students, and their plans for the remainder of the year.

(To assist the reader in linking statements to classes, we
will refer to the Countrytown teacher as teacher C, the
Rivertown teacher as teacher R, and the Techtown teacher as
teacher T)

All three teachers expressed some misgivings about the
experience.

The teachers in Rivertown and Countrytown who were using the
SUPPOSER for the first time this year emphasized that they
felt inadequately prepared. (The fact is that due to
logistical and scheduling problems they received little
training.)

Two of the teachers, teacher R and the Techtown teacher who
was using the software for the second year, expressed
disappointment in the performance of their students. They
attributed the problem in part to the characteristics of the
students. Teacher R thought that the ability and the age of
her all freshman class were major factors. This teacher
indicated that students are used to doing more concrete work
and to learning in a context where there is one right answer.
She also said, "These are ninth graders who seem immature and
can’t sit still." She reported that in conversation with
other teachers in her school that the behavior and
performance of this particular group of students was not
unique to her geometry class. All of this was exacerbated by
the fact that the class is scheduled for the last period of
the day and that a number of the boys in the class play
freshman sports which means early dismissals and frequent
absences.

Teacher T also thought that the lack of progress related to
the students’® ability level. Based on the performance of
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last year s SUPPOSER class, an average class, she exXpected
that this year’s class, even though below average students,
would be farther along and that the SUPFOSER wculd be a
motivating factor for these students. She wondered whether
these students simply operate on a totally concrete level and
that to move from the specific to the general to proof may
just be too much for them.

Both teachers thought that these students needed much more
structure and direction than they had anticipated.

While concerned about student learning, »oth witnessed some
growth in the students from October to January. Teacher T
noted that students vere getting better at organizing data
and that some sense of generalization was starting to emerge.
Even for those students who needed the most structure, there
seemed to be some trans.er. She also observed that the
SUPPGSER provides no opportunity for evasion. In traditional
geometry, students can get by with memorizing theorems,
axioms, proofs. With the SIPPOSER, a student cannot fake
what he or she knows, and it quickly becomes apparent when
and where a student is having trouble. In this respect, the
SUPPOSER serves as a diagnostic tool.

Teacher R indicated that the students were not making
conjectures, were ot listening to one another, or were not
working as a group. Also, they only seemed to test their
ideas on equilateral and isosceles triangles (“where they
know they’ 1l find scmething"), were not precise with their
language, and did not express their generalizations in
specific terms. She said that the students were collecting
reams of data and making very few if any generalizations.
All of which made class discussions about conjectures and
generalizations difficult, if not impossible. She did
acknowledge, however, that earlier in the year, they were not
ven collecting any data. She sz2id that she found it
difficuit to know what students "would be going away with"
and thought that to find out, she would have to srend time
(which she does not hua. ) working with kids on an individual
basis.

Teachers ! and T thought that they were seeing progress in
class, but that the progress di.. not seem to get reflected on
quizzes and exams, even on so-called "SUPPOSER problems."
(All teachers reported that their SUPPOSER students performed
as well on the mid-year exam as their comparable non-SUPPOSER
classes.)

Teacher C described a shaky start in his class, but while he
also had a lower than average class, he attrituted the
students’ problems to his own difficulties. He reported that
he was intimidated initially by the SUZPOSER. At the
beginring of the year, he said that he was unclear about the
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goals and the objectives and had no sense of what was going
on, and that his students picked up on this lack of clarity.
Initially students were withdrawn and quiet. They did not
react or engage. Now they were starting to fight back,
seemed interested in what they were doing and in how they
were doing. Some of the students had reached the stage where
they were thinking, not just vresponding mechanically, and
knew that they could not just sit back and let things go by.

Both "new" teachers (R and C) indicated that although they
thcught that they were comfortable with the inductive process
and "teaching inductively," they both reported that using the
SUPPOSER requires a lot of preparation time and a different
kind of preparation. Beyond getting familiar with the
software, teacher R said that ideally you should spend one or
twc hours every night working on problems and getting data
ordganized -- which is not feasible. Furthermore, it is
impossible to lay out lessons in advance or to plan too far
ahead. ("Even if you are prepared, something may happen in
class that you did not expect.") She indicated that she had
not put in sufficient time.

Teacher C said that initially he could have spent (and
sometimes did spend) 10 hours per week on the SUPPOSER
playing with the software, working through the problems,
trying to stay ahead of the class. It required much more
preparation than his other classes -- too much more. He also
stated that learning intuitively was a learning style that
was familiar, enjoyable, and productive for him. After
investing a significant amount of time getting up to speed,
he now found that preparing for the SUPPOSER class was not
taking any longer than for his other classes. On the
question of planning ahead, he liked the idea that if
something comes up with the SUPPOSER, you don’t say, "I'm
sorry we don’t get to that until Chapter 8," you stop and
take it on.

Also, he reported that he is more comfortable now saying "I
don’t know, " in response to a student question -- not only in
his SUPPOSER class but in his other classes as well. He also
feels comfortable about being flexible, respcnding to issues
as they arise in class, and in writing and organizing his own
lessons and problems.

Teachers C and R (using the SUPPOSER for the first time) .rere
as’ed to reflect on what would have constituted appropriate
any useful training. Teacher R said taking a course and
wolr«ing over time with a few students so that when you did
something, you would get a response and a sense of what the
students were thinking. Teacher C indicated that sitting in
on another teacher’s SUPPOSER class (which he did last year
several times) was inadequate. He suggusted that once
teachers were thoroughly at ease with the software, they
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should go through the problems themselves and experience
directly the kind of thinking involved. Finally, he
emphasized the importance of being able to observe and talk
with others using the software. He suggested the idea of
identifying mentors or working in pairs or teams within a
school. Both teachers emphasized the need for an extra prep
period for a SUPPOSER class, at least for the first year.

A key issue for all the teachers was what it means for
students to take on some responsibility for the control of
the learning process, and that seemed to be a key to student
resronse to the experience as well.

Teacher T thought that part of the problem with her class
this year was a reflection of the type of learning
experiences that this kind of student (lower level) has at
the elementary and middle school levels. In the lower
grades, it is only the bright kids, having finished their
work early, who have an opportunity to experience what it
means to learn on your own by "fiddling around." She thought
that for the students in this class who never had that
opportunity, learning with the SUPPOSER was more difficult.
One student said to her, "The other way is so much easier. I
know what I am supposed to do." Still, looking in on other
math classes of similar level and ability, this teacher
reported that her SUPPOSER class seems to be more on task
with less daydreaming and fooling around.

Teacher R said that the students liked the SUPPOSER and liked
going to the lab and the sense of freedom and control that it
gave them. However, the students lacked discipline -- their
response to the freedom was to tune out and walk away
(literally sometimes).

Teacher C talked about the need to make it clear that "this
is serious business." At the beginning of the year, given his
own uncertainty, he distanced himself from this class to make
it clear that this was not just playing around. 1In
retrospect it was a good idea and he should have been even
more formal. He thinks that students must understand that
with this shift in control goes a shift in responsibility and
that students must understand that this is work on which
performance will be evaluated. He thinks that when the kids
are of average ability, learning is as much a matter of
organization and discipline as aptitude.

What might the, Jo differently for the rest of the year?
Teacher T said she might try breaking the ¢lass up and
working with the kids in small groups on a regular basis.
Teacher R thougl.t that she would use the SUPPOSER less
regularly, work on fewer problems -- richer problems broken
down into smaller steps, and provide the students with much
more direction and structure. Teacher C also said that he
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would most likely use the SUPPOSER on a more selective basis
and try devising problems with the students (i.e., when an
appropriate question or problem came up in the class to ask
if the SUPPOSER might be helpful, how they might use it, and
then go to the lab and work on it.)

June Teachers” Writings

Countrytown

In the second half of the year, I was more selective using
the SUPPOSER. I tried to encourage more discussion and
focused on individual experiences in the lab. For example,
students explored relationships between angles and arcs. A
conjecture was made and the class tested and verified that it
worked in at least four different cases. 1Its proof was
assigned for homework and discussed within the lab the next
day.

Although class participation improved, students continued to
have difficulty writing convincing arguments. Putting
thoughts in written form was one of the most frustrating
experiences for students. For example, while working on
final projects one student was so excited by his discovery
that he proceeded to work through lunch ana his next two free
periods. He presented his ideas in class. However, when
asked to outline and organize them in writing, he drew a
blank. Therefore, areas I would focus on in the future would
be modeling of written material and verbal development of
conjectures through structured class discussions.

At year end, studonts have a "review" period (2 days) to pull
together the topics and material covered in the course.
During this period, I observed two major differences between
geometry stud2nts who used the SUPPOSER and those who had
not. First, students using the SUPPOSER "“talked’ geometry.
Their approach was more visual and manipulative. For
example, when working with a 30-60-90 right triangle,
students found that by reflecting the hypotenuse through the
line containing the long leg, an equilateral triangle could
be formed and hence the relationships between the lengths of
the. sideg could be easily derived. Flipping, rotating, and
zooming were terms used freely. Second, students seemed more
comfortable with the mathematics and less reluctant to
explore and make mistakes. In a tradiiional geometry
classroom, I feel students rely heavily on the "right" method
or formula. Students tend to spend more time memorizing
formulas, looking for the "right" answer, and are often
afraid to explore, conjecture, and make mistakes.

In conclusion, the SUPPOSER classroom is active with students
learning through inquiry, as opposed to mere memorization of
facts or formulas. Although the written work was not as
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developed as I expected, I was pleased with the sincere
efforts students put forth. I feel that the class came a
long way from day one.

Rivertown

During the second half of the year, we spent quite a bit of
time in the classroom and away from the lab. Nevertheless,
the class seemed to appreciate and enjoy the occasions we
periodically spent investigating concepts with the SUPPOSER.
As the year progressed, the class had a better idea of what
kinds of things to look for. However, I am not certain that
their concept of proof improved very much.

The culmination of the year for many students was the final
project. They began these enthusiastically and with the
greatest interest and excitement I had observed to date.
Guiding and watching their efforts, I realized that they had
a good understanding of how to acquire data; many had as good
or better ideas of how to analyze the data. Nevertheless,
many still had difficulty expressing their findings as
conjectures. The proofs of any conjectures they were able to
state were even more difficult to complete. Clearly, the
suggestion of having students write their conjectures in "if
then" form earlv in the year might help them better achieve
the idea of proof later.

My final observations confirm earlier indications that for
the majority of the students there was little correlation
between the work done in the lab and the material discussed
from the text. Average freshmen seem too immature
mathematically, too weak in basic skills, and too dependent
on the teacher to be ab. 2 to work independently with
consistency and thoroughness. It appeared to me that certain
skills were necessary for students to be successful with the
SUPPOSER. Characteristics of orderliness, independence, and
inquiry would enable them to produce better conjectures. To
help them acquire these traits, perhaps a series of exercises
could be developed in which students could learn to propose
questions and then draw conclusions. Time devoted to this
type of exercise early in the year might provide a stronger
foundation for the essential traits of orderliness and.
independence.

Techtown

During the last four months of the school year, Techtown
students did very little independent work using the SUPPOSER.
This came about because of some frustration in the lab
setting. Students would gather data diligently, but with no
sense of direction. They would ask, "Can you give a hint?
What do you want us to look for?" I would work with
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individual students and pairs, asking leading questions, and
trying to help them generalize from their observations.

In mid-February I decided that the way I was running the
class was, to a great extent, a poor use of time. The class
consisted of a small group of students, most of whom were
uncomfortable going out on a limb. In a sense they were
playing a game in which, by stating that the task I had set
was too undefined, or too difficult, they were excusing
themselves from spending serious at-home time pulling
together facts and coming up with meaningful conjectures and
convincing arguments.

in our meetings at EDC there was some discussion of ways to
get kids looking for the data which was significant, rather
than just anything. The most useful process seemed to be
something like this:

1. Make a construction and reweat on several
triangles/quadrilaterals, looking for visual clues
only.

2. Does anything strike you?

Figures that may be congruent
Figures that may be similar
Segments that may be congruent
Areas that may be the same
Parallels

3. Write down the things that you are going to look for,
remembering that ratio, as wesll as equality, may be
significant, and that sums of products may produce
interesting patterns.

4, Gather numerical data. When comparing quantities
that appear to be different, find the ratio of larger
to smaller, rather than smallzr to larger.

5. Make a formal statement of conjectures.
6. Look for a convincing argument.

This is a way of "doing math" that is totally different from
that usually experienced by an average student. At our
meetings, Dan [observer from research team] observed that
students tend to model the habits of their teachers, using a
ruler for diagrams if the teacher does so, using the
if...then format for writindg conjectures if the teacher does
so. Perhaps a student reaches high school being grouped
"average" in math partly because he/she is slow to pick up
clues and use the teacher’s way of working as a model. These
students may need more explicit teaching and direction as to
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what we want them to do (even if what we want them to do is
to become creative and independent learners!).

The small size of my class (eight students) gave me one
advantage -- it was possible to use a whole group format and
have everyone participate. From mid-February to June, the
class tackled several SUPPOSER problems as a whole group. We
usually proceeded as follows:

1. Give students the proklem.

2. If the problem is stated in words with no diagram,
have pairs of students try to come up with a paper
and pencil diagram.

3. Have a student put the drawing on the screen, and
repeat on two or three triangles/quadrilaterals if it
is obvious.

4, Brainstorm -- what measurements would be useful? Are
there any conjectures at this point?

5. Gather numerical data to check out conjectures.
Sometimes we did this as a group; sometimes
individuals went to the computers with an assigned
task.

6. As a group, state some conjectures. Have we covered
all the ground?

7. Convincing arguments.

As well as the whole group work, there were a few (no more
than 10) individual lab sessions from mid-February to June.
The total time given to SUPPOSER work averaged two periods
(of five) per week, but was Very uneven. We did very little
with the SUPPOSER while covering area (I now have a
collection of interesting problems for next time), but, as a
group, we spent two full weeks looking at some circle
problems that I was putting together for the research group.
At the end of the year, every student or pair completed an
independent research project.

What worked:

This format produced fairly high involvement and partici-
pation. Students became bolder in suggesting possible
relationships in figures. They became increasingly confident
in justifying their conjectures.
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What did not work:

When students had individual projects, they showed little
improvement in self-direction. Students who. in class
discussion, would suggest measurements to compare, who could
think about inequalities and ratio, on their own would go
back to recording every length and every angle, then call me
over, saying,"I don’t have anything. Nothing is the same." I
also felt some discomfort because, since students were not
meeting my expectations, I had, in one sense lowered them.

What I would do differently:

I think that I overemphasized methodical data collection at
the beginning of the year. This became a crutch for the
students-- anyone can collect a page of data and avoid the
necessity to think. While students must learn to organize
numerical data, I would put more emphasis on looking for
visual patterns. I would show students exemplary assignments
and projects starting at week one. Students were amazed when
they saw the work of Richard’s [Houde, member of team] best
student (in May). Even though I believed that I was
articulating what I wanted, they did not really understand
what they could do.

This report sounds negative, yet I believe that these
students did get more out of their Geometry class than they
would have done in a traditicnal class. They complained that
the class was hard, that it would be easier if I would just
give all the answers and have them take notes. They admitted
that they were being challenged (and they didn’t 1like it!).
By the end of the year, though, almost everyone had a sense
of how to go about getting a proof. The rroofs were cften
flawed, but there was an understanding of the need for proof
and that a proof was a logical sequence and not a list of
unrelated statements.

C. Students” Perspective

To investigate the perspective of students, two members of
the research team interviewed eleven students from the three
SUPPOSER classes at the end of the school year. The students
were selected by their teachers guided by the suggestior that
those selected be students who might have something to say,
would speak up, and would take the task seriously. There
were four from each of two classes and three from the third,
seven boys and four girls. They included some of the "best"
students and some of the "worst," some who prospered with the
SUPPOSER and others who found the program very difficult.

All the interviews were conducted at the schools by two of us
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working as a team, talking -- with one exception -- with
pairs of students.

Questions included: Was it difficult using the program?
What was it like to learn with the SUPPOSER? What was easy?
What was hard? What was different? What was it like to be
taught with the SUPPOSER? What would you do differently if
you were teaching the course? Did this way of learning
geometry have anv impact on your thinking or work outside of
geometry?

1. USING THE PROGRAM: "... THE COMMANDS ARE ALL THERE."

When the intervention began, there was concern that some
students would find working with the SUPPOSER or with the
computer difficult, but that was not observed. The
interviews were consistent with the observations. Every
student interviewed shrugged off the idea that the software
was problematic. So it follows that making constructions and
making measurements also posed no problem:

"Basically, the directions are right in front of you. You
just press certain buttons.”

"I don“t think that the computer program was hard. That
was easy to understand. I understood how to find the
angles. I understood how to go through finding the areas
and all that."

*(Sl) "Oh no, very easy."
(S2) "No, that wasn't a problem."
(Sl1l) "It’s just label, measure. It°s no problem."
" the commands are all there. You just have to press
one letter commands and then enter numbers and angles.
If you just picked up the disk and said, ‘What’'s this?”’
and loaded it and just looked at it, you could start doing
stuff on your own. All the commands are right there."

2. LEARNING WITH THE SUPPOSER

The Jovys: ""Wow! This works so good."

When students were exploring and experienced the joys of
discovery and confirmation, they were delighted:

*  The notation S1,S2 stands for Student 1 and Student 2
and is used to differentiate the two student voices
in consecutive comments frem the same interview.
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"Sometimes I can really get into it and really try and
solve things. It can be interesting."

"At the beginning of the year, my rirst packet, I really
got into it once. I got two A+ ..."

(S1)"Once you know what you're doing then it’s followed
very easily."”

(S2)" You get all excited and say, I know what I'm doing.
This is great!” When you really finally get it, you're
like, "Wow! this works so good. "

"... I can understand this. The information is so easy to
get. I know exactly what’s going to happen. You can
predict what’s going to happen. ... Then it does."

F~r one student, integrating induction into the learning of
geometry fit his learning style like a comfortable pair of
old shoes:

"I think that just the SUPPOSER was a parallel to the way

I do it [learn]. I see a lot of the way I learn in using
the SUPPOSER. .. When you have labs, you learn from your
observations. This was the same thing. ...I like

learning from experience or from seeing what other people
have done. That’s what it is. You're doing the stuff
yourself, so you’'re rediscovering stuff. It’'s really your
own learning."”

The Hardships: "Conjectures are kind of hard because

For almost all the students, conjectures presented real
problems. Knowing what to conjecture about, discerning
patterns and relationships, and generating conjectures were
all hard work. For some students, conjecture-making was the
province of "smart people."

(Interviewer) "Do you like it?"

(S1l)"Yeah sometimes. Like I say, you have to get
conjectures about all this stuff. That’s really hard.
That’s not to do with a computer, really. The computer is
just supplying the information. That kind of spoils it
with the conjectures.

(S2) The rest of it’s pretty good."

" I didn"t like making conjectures because I don’t think I
do very well at that. "

"Sometimes it’s pretty hard ... not hard with the

computer, but hard, like, for a conjecture. You know when
you don‘t really see anything there."
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see things the other people do; but when you see thenm,
they 're obvious."

", Conjectures are kind of hard because you just don’t

This student pointed to the frustration of making conjectures
and then finding out that you missed something:

" They don’t give you enough. It’s too general about what
you have to figure out. You can just go through it and
figure out everything you can. You get surprised,
thinking you did a good job and then you come out knowing
you were supposed to find this, and this, and this, and
this, and you didn’'t find it. It was just -- it’s weird."

2. BEING TAUGHT WITH THE SUPPOSER

Guidance and Direction

In general, students voiced a need for nore guidance and
direction, particularly when it came to the difficult task of

making conjectures.

These students seemed to feel loust and a little overwhelmed
by the responsibility of speculating and generalizing:

(S1)"... You have to get a conjecture out of nowhere. I
don’t know. What do you think?"
(S2)"... You have to start it all on your own. She’'ll

[the teacher] give us a little something. The sheets that
we work on will say a little something. We have to come
up with everything. That’s what wé re supposed to do.
We're not complaining. It’s just a little hard sometimes.
Maybe we are complaining."

For these two students, conjectures were difficult because
they didn’t understand what a conjecture is and they lacked a
model for generating conjectures:

(S1)"... He'll give us two triangles and we re supposed to
figure out what’s the relationship. He“ll go ‘Think of
conjectures. "

(S2)"Conjectures to me, can be anything.
(S1)" .. He lets us do anything we want for conjectures,
but it doesn’t help me at all in thinking th2m up."

1"
.

This lack of a clear model and insufficient direction was
echoed by several students:

" I know they wanted you to think and everything, but I
felt 1like I couldn’t do it. We have a lot of smart people
in our class, not a lot, but a few smart people and they
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were always getting it. I°d have to sit here for a half
an hour trying to figure out what the problem wants me to
do, first, before I can go and work on the computer."

"It was harder to think about what the question wanted you
to think about, than the book, where they give you
examples and you have that."

"Usually when she gives us hints, we know."

This last student and her partner found this approach to
learning satisfying, but ran into difficulties when
confronted with a problem that was more open-ended and larger
in scope.

(S1)"She never told us what to exactly lcok “or, she just
explained it better. She didn't leave us hi..gying."

(S2)" She told us to check this out and check that out and
this worked. You felt like you saw what she wanted you to
get. Now we 're not seeing it because it’'s weird."

In one class, the teacher responcded to students’  need for
more direction with detailed step-by~step instructions. But
as a student in this class indicated, it -"asn’t the solution
for everybody.

"On the problem sheets we have, it will say, “Step 1:
Here s your angles of the triangles.” It will say, ‘“Put
an equilaleral triangle on the screen.” It will say,
‘Mez< 1ze angles, sides, lengths. Get all the data.” Right
ther¢ it gives you teo much. They should just give you
the problem and let you figqure out what to measure and
what to..."

Although they founa it difficult tc articulate, several
students seemcd to understand that there is a difference
between provi:ing a clear definition of the task and guidance
in a problam, on the one hand, and making problems simple and
spelling out detziled, step-by-step instructions on the
other. The student who was most at home with this style of
learning said it best:

" [If I were teaching] When I started out, I. would discuss
it more, I°d show more of how to do things. Then as you
got more and more into the thing, I°d ease off and let
people figure it out for themselves, instead of saying ...
because then you are back to the textbook which gives you
the answers and then asks dquestions when you know the
answer already basically. I would do more talking in the
beginning and less in the end instead of sort of steady
all the way through."
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Integrating the Classroom Experience and the Lab Experience

Another problem that some students perceived was a lack of
integration of the classroom experience with the experience
in the lab. Deductive learning in the classroom provides a
critical framework and an essential foundation for the
inductive experience in the lab. If teachers are unable to
interweave the two types of learning, there is a greater
likelihood that students may find making conjectures
difficult and the experience frustrating.

For some students, it appeared to be two parallel curricula:

(S1)"We're doing completely different things in the
classroom [from the lab]."

(S2)"There is [a relationship]. We just don't see it...
(S1)"Yeah, the computer is completely different. One day,
we ll just go to the computer and start a whole new thing.
We’ll just foraet about what we re doing in the classroom.
That’'s confusing ... It really doesn’t go with what we’'re
doing in the book at all."

"It’s like we switch back and forth, back and forth, and
back and forth. We step forward and backwards M

"I didn’t understand what we were doing when we went back
70 class. 1 rather work from the book because then, 1I
think I°d get more out of it."

" I think it was at least twice as hard. You're trying to
learn both from the book and down in the computer lab. It
puts a lot of pressure on you."

When the relationship was apparent to this student, the
experience was positive:

"If we had gone over it in class, the next day, scmetimes
we’d get the same type of problem [in the lab] that we had
in class. Then it was easy, but when we hadn’t done it in
class, I didn’'t know what I was looking for."

In two of the three classes, this situation was confounded by
a physical separation of the classroom from the lab.

" I think it would be a lot easier if we just stayed in
the computer lab and worked, just stayed in the computer
lab [rather] than going back up stairs [to the classroom]
and working upstairs.

"Don‘t just, as we 'rt¢ leaving [the classroom], after the
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bell rings, ‘By the way, we’'re going downstairs [to the
computer lab] tomorrow.  That nhappens all the time."

One member of the class in which the computers were in the
classroom commented:

"She does a chapter in the book and then we’ll go to the
computer for awhile. They do relate to each other. You
get more of an understanding of little basics."

3. THE DIFFERENCES: "WE'RE COMPLETELY DIFFERENT."

We knew that this approach to” learning and teaching geometry
was radically different from traditional instruction. These
interviews helped us to identify and to characterize some of
the differences.

All the students acknowledged that this experience was a
significant departure from the "normal" experience in their
schools. This was captured in a dramatic exchange between
two students:

(S1l) "I foel so strange. We're the only class."
(S2)"We can’t even associate with other kids in the other
classes. We’'re completely different."

This approach with the SUPPOSER called for new and different
behavior on several fronts and levels. These are some of the
major differences that students cited.

Grading

There was the matter of what constituted successful
performance. By changing the nature of the problems, we
changed the criteria for success and the basis for grading.
Several students commented that they would get a better grade
learning with a textbook since there was less room for making
mistakes. With a single right answer to a problem comes a
certain precision. Working with the SUPPOSER seemed more of
a hit or miss affair.

"I do better in the classroom than I do with the computer.
I did better gradewise. I mean in tests. On the computer
I would be more likely to get a B than an A. 1In the
classroom I.°d get A°s. On the computer you can mess up
here and there. 7T make little mistakes that I wouldn’'t
make in class."
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The Lab Environmer.t

Another studen®* commented on the i:formal nature of the lab
environment in contrast to the c¢lassroomn:

" When you're in the lab, you can make jokes and
everythiny whil2 you’re werking. In the classroom, if the
teacher is giving a lecture, you can’t do til:at. You can
say something to a friend and it’s not like, *Shh! This is
a classroom.” It's more relaxed. I like that."

Depth and Breadth of Content Covered

As indicated in that dramatic exchange above, students felt
isolated from their peers. The classes in this study were
the only ones at their ability levels in vheir schools
working with the SUPPOSER. This prompted some teachers and
some students to constantly compare their experiences and
their work with those of the other geometry classas. For
some, When it came to coverage of material and depth of
understanding, working with the SUPPOSER was a wash or even a
plus:

"We“ve kept up with the other classes even going to the
computer room and spending this time. We're still on the
chapters that they are on. We've spent a lot of time on
them but we 're not behind."

"I think you learn pretty much the same. Sometimes we
find ourselves ahead of other classes. Then we’'ll go to
the book for a while and they might catch up. You know,
like a couple of sections ahead. I think we probably
learn the same."

"Other classes don’t go into as much detail as we do about
medians and so on. ... We really go in-depth about them.
Other people, they just know what they are and know what
they do. I think we are more familiar with them."

For others, what they perceived as a lack of linear structure
in the content, i.e., not following a text, war disconcerting
and learning more about fewer topics than the next class was
troublesome.

(S1)"One day, all my friends, in the other classes, they’d
be learning it straight right through the book. They
started with page one and go right through to the end.

The way ours works out, we skip totally around them and
miss whole sections."

(S2)"I'm afraid we might be behind next year

(S1) "Basic geometry is ahead of us right now."
(Ss2)"They 're ahead of us right now. I mean,like, we might
go into more detail and learn more about it, but they 1l
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kriow more. They’'ll have more knowledge about geometry
than we will.

Learning, Twaching, and Knowing

But at the deepest level, the integration of inductive and
decductive learning seemea to challenge the fundamentals of
the educational experience -- what it means "to learn," "to
teach," and "%t9o kno-."

These differences went well beyond whether the class moved
strzight through the book:

"It’s a 1ot di“ferent from the book -~ not different from
t:2 Look, but raught different. 1It’s understood
different, also, from the book. You have to do yoursalf.
it’s independert.”

For some, there was a loss cf certaint .nd comfort.

"In class you know what you're doing. She just taught you
it. It's right there in your notes. It°s numbers. How
can you go wrong? There [in the 1lab], it’s just
like,"On, no!- "

With a greater emphasis on student inquiry came what seemed
to be a one hundred eighty degree shift in pedagogy.

(S1)"In class, it°s like, "This is how it is.” "
(S2)"There [in the lab], it’'s like, ‘How is it?""

Learning was no longer a process in which a teacher whc knows
all, discourses, and students who are passive, take in the
knowledge. One student characterized learning as
"absorbing." This student sums it up by contrasting "teach"
and "memorize" with "learn" and "think:"

" It's different. It’'s like abstract thinking. 1lt°s
different than anything else you’ve :ver done. ... DMaybe
a little harder than I expected. We have to think about
everything that you learn, instead of just having a
teacher teach you, memorize it, and just do it. You have
to think about it yourself."

In this experience, students had to think:

" You got to use your mind a lot. 1In class, you really
don“t. She spells it out."




Students had to work and be active participants in the
learning process:

" _.. you're not just sitting back listening. You're
doing the work."

Students sensed they had a larger degree of independence and
responsibility. There also seemed to be a perception that
more independence and responsibility for students meant that
less teaching and therefore maybe less learning, was taking
place:

". you have to learn things that you normally learn from
the teacher. You have to figure them out yourself."

" vou have to discover things on your own instead of
having it taught to you."

" If I had Ms. [another teacher], I think my grade would
have been a lot better. This lady [the other teacher] was
really driving it [the content] constantly.”

(S1) "All the other classes have tons of theorems."
(S2)"... Yeah, they had the theorems. They're just
learning them and they have tests on them. We have like -
- you go down there and you learn similar triangles. You
have to figure it out yourself. Find out if there are two
angles equal and all that, that makes them similar. Stuff
like that. The teacher would normally tell you that."

The theme of discovery and invention was echoed by several
other students.

" I think you learn a little less [geometry], but I think
what you learn you learn better. You sort of make it up."

One student saw the objective as reinventing géometry and the
erperience of Euclid.

"We learn about how the guys who thought up geometry,
originally, figured it out with theorems, and stuff like
that. A lot more thinkirng and abstract.”

For one student, the one most comfortable with the approach,
he thought it was refreshing to have a stake, a direct hand,
and a role in the learning process and establishing what is
known and true:

"It takes the place of a textbook. We do our homework at
night, then, we come in and we work on -- we reprove some
of the theories and stuff, and disco7er, without the book
actually saying, "Oh, this is true,” and show you a proof
of how to do it -- but basically you just have to believe
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it. Here you have actually proved it. The physical way
of doing it, sort of gives you more experience -- you
learn it better. Also it gives you sort of a mental --
like, "Oh, I did this.” "

For some students, taking responsibility for learning was not
the student’s role:

" ... we're only students. There’s a lot of stuff we re
not sure of. At test time, if you get it wrong, who’'s to
blame? [With the SUPPOSER] You taught it to yourself,
basically."

For some students, what they did in the lab was not learning
and they looked forward to, as Woodrow Wilson characterized
the post-war period, "a return to normalcy:"

"Algebra from this? ... I think it’s just going to be
going back to a regular class. Like we did before, just
learn. ... Right from the book and have the teacher
teach."

4. TRANSFER BEYOND GEOMETRY: "... I ALWAYS MAKE CONJECTURES

NOW ABOUT LITTLE THINGS."

Several students thought that their experience with the
SUPPOSER had carried over to other classes and/or affected
the way they think and solve problems. Those who experienced
this transfer referred to organizing data, to being
analytical or solving problems, and to making conjectures or
generalirations.

" You become more organized, especially in your mind after
doing all this stuff. Way more organized. Things start
to come in columns in your head. Things that you want to
look for, you just kind of sort them through."

"If somebody, a teacher or anybody, tells you something,
you think maybe it could be this. You have a bunch of
ideas. Not just two, but a bunch of them. You’'re
thinking what could be the reason for it? You have a list
of ideas going through your mind. Then, you sit down and
play it out or figure it out.™"

" You’ll look at all the stuff vou have and then you‘ll
just kind of put it together and see what you can get out
of it. I'm not sure we did that so much before."

"... I always make conjectures now about little things. I
don’t know. 1It’s very hard to explain. I°ll be in
another class. You see how things work, so you make a
conjecture and you generalize about other things.
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Especially in biology because it“ s life in general. It’'s
so interesting. You can just make conjectures.”

5. CONCLUSION

In these interviews; students were interested, articulate,
and insightful.

The interviews confirmed observations over the year that the
computer and the SUPPOSER did not trouble students in the
least. They are much more at home with the technology than
adults and can adapt quite easily and quickly to an
unfamiliar interface.

In general, the students seemed to understand the power of
the guided inquiry approach-and enjoyed learning this way
when they were successful. For the most part, they liked
learning with the computer and seemed to think that with this
approach came a deeper understanding of the content. When it
worked for them, they sensed the excitement of discovery and
learning. Some students indicated that they were using
techniques and strategies from this approach in other
classes.

Nearly all the students found guided inquiry more difficult
than a traditional approach and experienced some frustration.
Some of this can be attributed to a less than optimal
implementation of the approach. Some of the frustration can
be attributed to the fact that two of the classes were
considered low ability level and even the honors class,
according to their teacher, was misclassified. Some of the
negative remarks can also be attributed to givinec
adolescents, who normally have no voice, an opportunity to
speak out. But there is no question that students, whether
they liked or disliked the approach, foi'nd it to be very
different from what they considered standard, normal
practice.

Schools like every other institution have norms, explicit and
implicit, codified and uncodified. Teachers are the agents
for these norms, socializing students into the culture. As
part of thal socialization process, students learn what it
means to be a member of the culture and what it takes to
succeed, and they make accommodations. Students tune their
behavior and their expectations to the norms.

From the interviews a composite of "normal" practice as
perceived by the students can be constructed: a teacher
using a textbook (whose contents and sequence are sacred)
conveys "true" information to passive students; the
information is received by the students in a lecture format;
the student applies it to problems which have a single answer
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and are similar in form to those solved in class; the student
memorizes and absorbks the information, and through
performance on tests, demonstrates understanding of the
informati<n. -

In contrast, the guided inquiry approach with the SUPPOSER
calls for teachers to play two key roles. First, teachers
provide students with the fundamentals (definitions,
concepts) and with the skills (inquiry, inductive and
deductive reasoning) necessary for exploring geometric
relationships. These tools may be drawn from a text,
supplementary materials, or homemade curriculum. Second,
teachers serve as guides and models for student inquiry and
student movement between the specific and the general, the
empirical and the theoretical. Students are active and
responsible participants in the learning process. Building
on the fundamentals, students should be able to discern
relationships, to assert hypotheses, to test their
hypotheses, and to prove the general validity of their
hypotheses. Students should be able to demonstrate their
knowledge by applying the knowledge and skills they learn and
develop to new problems that deal with unfamiliar situations.

The critical difference between the two approaches is the
added dimension that guided inquiry and the SUPPOSER bring to
the learning and teaching of geometry. In traditional
geometry instruction, students operate on an abstract level
only: they are taught axioms and theorems in order to use
them to prove other results using deductive reasoning. Using
the SUPPOSER brings an empirical dimension to the geometry
experience in which students can construct, manipulate, and
measure particular geometric objects. In a guided inquiry
approach with the SUPPOSER, when students are presented with
a task concerning an axiom or theorem, they <an address it on
an experiential level, exploring the task en irically as they
build their understanding. In this approach, student
understanding of axic—s and theorems is deepened- and
clarified by moving back and forth between the empirical and
the theoretical.

With the added empirical dimension come new r.ules for
students: students now must take an active part in and some
responsibility for the generation and validation of knowledge
-- a deviation from the norm and a challenge to the culture
and the standard reiationships among student-teacher-
knowledge. These roles and responsibilities traditionally
have been the sole preserve of the teacher in pre-college
mathematics (and in most other subjects as well).

Based on this sample of students, the "normal” approach is
the standard. Students in all three classrooms in all three
schools described this as the way geometry, other mathematics
courses, and other subjects are taught. Even the studeunt who
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embraced the approach with enthusiasm and said that guided
inquiry matched his own style of hands-on exploratory
learning, indicated that such a match had been rare in his
school experience. Students who had trouble with guided
inquiry seemed to long for classes where teachers were
teachers and students were students.

Many of the concerns voiced by students about guided inquiry
were also voiced by teachers. One explanation is that
teachers discussed their concerns and their misgivings with
the students in class. There probebly is some truth to this.
Another is that teachers and students in the same class and
school are members of one culture and subscribe to the same
norms concerning instruction and learning. Any deviation
from these norms will surely be perceived and experienced by
students and teachers alike.

With the guided inquiry approach, students were well aware of
the significant differences in how they learned, how they
were taught, how much they learned, and how much they were
taught.

This experience violated the norms and students found this
disconcerting. It is no wonder that the making of
conjectures and the guided inquiry approach proved
frustrating and difficult at times.

D. Tests of Student Mathematical Skills

1. STUDENT ABILITY TO MAKE GENERALIZATIONS/CONJECTURES

A pretest and posttest were developed to assess students’
ability to make generalizations given data or a description
of a geometric situation. This section provides a brief
review of the design of the tests, the scoring system, and
then the results of student performance. This discussion
examines the data in terms of differences in performance on
the pretests and posttests between the students who used the
SUPPOSER to study geometry in a way that integrates induction
and deduction (the experimental group) and the non-SUPPOSER
students who studied geometry in a traditional manner (the
comparison group).

Test Design

The pretest and posttest consist of four problems and three
problems respectively, each presenting a statement, a group
cf mathematical facts, or a mathematical idea from plane
geometry, along with appropriate diagram(s). The first two
problems on both tests include numerical data. The remaining
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problems describe an idea abstractly (see Appendix D for
copies of the tests).

The instructions on these tests ask students to list any
significant statements connected to the problem. The
instructions are deliberately vague in order to ascertain
what students consider "significant" and "connected." We
asked teachers explicitly to refrain from explaining or
elaborating on the instructions when they administered the
tests.

In framing the instructions, we wished to invite any
plausible idea, not only generalizations, and as many
statements as possible. There were no constraints such us
demanding that the statements be true or be supported by
arguments.

Scoring of the Tests

The tests were scored using five central variables defined by
Michal Yerushalmy (1986). These variables were created in
order to enable researchers to examine students’
generalizations and their ability to generalize from a given
statement. Of these variables, the first three are rated on
a 0-5 scale. The remaining two are scored on a 0 or 1, exist
or don't exist, scale.

-- Level of generalization (LEVEL)

-- Originality of generalization (ORIGINALITY)

-- Correctness of generalization (CORRECT)

-- Changes made to the original statement in order
to create the generalization (CHANGES)

-- Supporting arguments for the generalizations
(ARGUMENTS)

The final category is not relevant to the ability to make
generalizations. However, in some instances students provide
proofs or arguments spontaneously, and so the variable
ARGUMENTS provides important confirinatory evidence for the
findings of the proof test.

On each problem, students tend to make more than one
statement. Each statement is examined and is assigned a
LEVEL value from O to 5. Examples of the coding of different
level generalizations are presented in Appendix E-1. The
LEVEL measure is the value assigned to the most general
statement produced by the student on a given problem.

ORIGINALITY, called plausibility in Yerushalmy’s study, is a
measure of the connection of the statement to the problem and
to the school’s curriculum. Statements connected to the
problem, and not covered by the school curriculum receive a
high score of 5, while those that are poorly connected to the
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problem or that are trivial because they were covered at
length in class are rated ac a low level of ORIGINALITY.
Once again, since students offered many statements,
ORIGINALITY is the value of the most original statement on a
given problem.

CORRECT is a measure of the percentage of student statements
that are true for a given problem.

In addition to these three measures, we examined two other
aspects of students’ statements--the changes made to the
original statement in order to create the generalization
(CHANGES) and the arguments given to support the statement
(ARGUMENTS). In her study, Yerushalmy calls these "type of
variable changed" and "reasoning," respectively.

We were interested in three types of changes:

1. object of interest
2. geometric relationships
3. numerical variables

This variable (CHANGES) was created by noting the presence or
absence of the three types of changes. Examples of each of
tlie types of changes appear in Appendix E-2.

In a similar manner, we constructed a variable (ARGUMENTS)
from four categcries of arguments:

an informal written explanation

reference to a diagram or explanation via a diagram
a formula

a formal proof

WD

Thus, ARGUMENTS represents the number of categories of
arguments given by the student to support the statements. It
does not represent an absolute number of proofs given.

Results

As mentioned above, there were two types of problem
formulation: data formulations and abstract formulations.
Based on prior work by Yerushalmy, we expected to find that
problem formulation would affect all of the students’
responses. It is helpful to consider the nature of these
differences before examining group differences on each of the

five variables.

In fact, both experimental and comparison students responded
differently to the two types of formulations. Most students
seemed to be less inhibited in their generalizations and
experience greater freedom of thought when the question was
posed abstractly. Their conjectures were more general and
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they presented more proofs (see Appendix F for a full
analysis of this phenomenon).

One possible explanation for this phenomenon is that the two
types of questions elicit different respcnses. With a data
problem, first the data must be manipulated and interpreted
before further generalizations or a convincing argument can
be tackled. On an abstract question, there is no need to
manipulate the data and one can move immediately to abstract
thought and concentrate on conclusions and generalizations.
This may be particularly significant in a testing situation
where time is limited. Therefore, in our discussion we will
consider each type of problem formulation separately.

Differences Between Experimental and Comparison Groups

In testing for differences between the experimental and
comparison groups, a chi-square analysis was performed to
compare the performance of experimental and comparison groups
on each pretest and posttest question for each of the five
major variables (LEVEL, ORIGINALITY, CORRECT, CHANGES and
ARGUMENTS). 1In reporting the results of these analyses, we
explain which cells were collapsed and list a chi-square
statistic, a probability measure (either chi-square or
Fisher s exact test), and a measure of association (either
phi or Cramer’'s V).

Differences Between Groups on the Pretest: In the beginning

of the school year, few students in either the experimental
or the comparison classes had any background in geometry.
There was very little work on the pretest problems and
students didn"t have much to write. There was a strong,
significant difference in favor of the comparison group on
ORIGINALITY in problem one. There were no dther
statistically significant differences between the comparison
and experimental groups on the pretest. {See Appendix G-1
for the statistics on the difference in ORIGINALITY on
question one.)

Differences Between Groups on the Posttest: After a full

vear of geometry instruction, the posttest included many
topics which were covered in class and familiar to students.
The students wrote many more statements in response to the
questions on the posttest. Since there was only one
significant difference between the groups at the beginning of
the year (in favor of the comparison group), our interest is
in the posttest following the year-long intervention.

At the end of the year, there were statistically significant
differences between the experimental and comparison groups on
question one and question three (see Appendix H-1, H-3). The
nature of these differences varied by type of question, as
one would expect from the previous discussion of the data and
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abstract formulations. There were no statistically

significant differences betWeen the two groups on question
N two. However, in retrospect, it was a problematic question

since the diagrams contained some irrelevant information.

-- Data Formulation (Question #1)

On question one, it is clear from histograms of the
frequencies of responses at the different levels of
generalization (the values of LEVEL) that there were
differences between the groups (see Figure 1). Fifty-
nine percent of the comparison group generalizations were
rated zero on the LEVEL variable.

A chi-square analysis reveals that, comparing "high" and
"low" LEVEL generalizations on question one, the
difference between the two groups was moderately strong
and statistically significant (chi-square = 4.07, p-value
<0.044 , phi = 0.32). Stated another way, the chances of
getting a generalization above level zero were 4 times
more likely for the experimental group than for the
comparison group.

There were no other statistically significant differences
between the experimental and comparison classes on this
question. On the data question the sole significant
difference between the groups was that in the classes
that used the SUPPOSER, students developed more general
conjectures.

-- Abstract Formulation (Question #3)

On question three, there were many differences between
the response patterns of the experimental and comparison
groups. As in question one, there was a difference in
the LEVEL variable.

Consistent with the earlier discussion, students in the
comparison classes produced conjectures of a slightly
higher LEVEL on this question than on the first question
(level one generzlizations on average in contrast to
level zero generalizations). However, the conjectures of
the SUPPOSER classes were at even higher 1levels.

As in question one, the difference on the LEVEL variable
between the experimental and comparison classes”
responses for question three was significant. However,
this time the strength of the difference was much higher
(chi- square = 12.98, p-value < 0.0003, phi = 0.59). 1In
fact, SUPPOSER students were 31 times more likely than
comparison students to produce a generalization above
level one.
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FIGURE 2 - ARGUMENT/PROOF TEST
Frequencies of formal and informal proof in experimental and comparison students' work.
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Number of students producing proofs

As these charts reveal, the percentage of students producing
informal proofs does not differ significantly from comparison
to experimental group on any of the questions. The
percentage of students producing formal proofs on questions
one and three also does not differ greatly from comparison to
experimental groups, though in each case in the experimental
group a higher percentage of students produced proofs.
However, in problem two, a chi-square analysis reveals that
the difference in the frequency of formal proof between the
two groups is moderately strong and approaches significance
(chi-square = 3.03, p-value < 0.055, phi = 0.25). The
chances of a student in one of the eXxperimental classes
making a formal proof on problem two were 5 times greater
than the chances of a student in one of the comparison
classes.

Description of qualitative differences in student work

Looking more closely at the students’ papers, two behaviors
were exhibited by the experimental group on question two that
were not exhibited by the students in the comparison classes.
First, many of the experimental students used arguments based
on the congruence of quadrilaterals, arguments which are
generalizations of congruence arguments for triangles. These
arguments weire not covered in their course, yet were
constructed by the SUPPOSER students in response to the test
question.

Second, these students tested the statements in specific
cases (i.e., assigning numbers to the lengths and angles) in
order to convince themselves that the statement was true
before constructing a proof. Students in the comparison
group did not exhibit either of these behaviors.

Conclusion

The argument/proof test study reinforces the finding from the
generalization/conjecture test study that the experimental
group’s empirical work with the SUPPOSER during the year did
not hinder their ability to make proofs. 1In fact, the
performance of the experimental groups on the argument/proof
test indicates that the experience may have fostered an
ability to make arguments. These students made as many
supporting arguments as the comparison class on two of the
questions and more arguments than the comparison class on the
third. The students who worked with the SUPPOSER were able
to begin with the specific and work their way to a general
proof; they were not trapped by the specific.
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3. STUDENT SCORES ON MIDYEAR AND FINAL EXAMINATIONS

Neither Rivertown nor Countrytown had departmental midyear or
final examinations. Both teachers in these sites however
reported that their students scored comparably to other
classes on midyears and finals, though these tests were not
standard across the dcpartments.

Techtown had departmental midyear and final examinations.

The Techtown teacher convinced her supervisor to exempt
SUPPOSER students from the departmental midyear. The class
did take the departmental final examination. These tests
were the same across all "level three" (lowest ability level)
geometry classes with one exception -- students in the
SUPPOSER class were given one additional test item--a
SUPPOSER - like pencil and paper gquestion.

Here are the results of SUPPOSER student performance compared
with non-SUPPOSER students:
Table 1

Techtown Final Examination Score Frequencies

Fisher’s
SUPPOSER students non-SUPPOSER_students P phi

scores scores scores scores
above 60% below 60Y% above 60% below 60Y%

7 1 36 44

scores scores scores scores
above 80% below 80Y% above 80Y% below 80%

4 4 3 "7

These results are particularly striking because at the
beginning of the year the SUPPOSER class was considered the
weakest of the five classes at this ability level. In
addition, they are striking because the SUPPOSER students
performed poorly on the "SUPPOSER" question which dampened
their scores on the test as a whole.

Several cautions about drawing conclusions from this data.
The classes being compared were taught by different teachers
and were scheduled at different times of the day.
Furthermore, there were only eight students in the SUPPOSER
class, while there were thirteen, twenty, twenty-five, and
twenty-five students in the other classes.
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IV. CIANCLUSIONS

From the results of the study, we draw conclusions about
studerit learning and about implementation of a guided inquiry
approach. (In the conclusions, we reverse the order in which
we deal with the research areas: from implementation and
student learning to student learning and implementation.) We
then go on to make recommendations for changing the approach
and to identify topics and concerns for future research.

As a reference for the reader, we begin each section by

repeating the research questions related to student learning
and implementation which were outlined in Section I.

A. Student Learning

Conclusiovns about student learning include mathematical
content and skills and insights and skills related to the
learning process.

Student Learning - (Research questions)

The transition from the specific to the general
Ar, students able to generalize from data collected
abc. - specific figures to conjectures about classes
of Ligures?

Over the course of the year, what is the evolution of
students” ability to generalize?

What difficulties do students encounter in moving
from the specific to the general?

At the end of the year, tc what extent are sty ients
able to develop generalizations when presented with
geometric situations and data?

The transition from generalization to proof

At what point do students seek to formalize their
conjectures?

Over the course of the year, what is the evolution of
studernzs’ ability to formalize their knowledge?
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What kind:s of evidence or process do they consider
sufficient to establish "proof?"

At the end of the year, to what extent are students
able to produce informal and formal proofs in
response to true geometric statements?

1. MATHEMATICAL LEARNING

Although the SUPPOSER-based intervention emphasized skills
and activities that are not a part of the traditional
approach to geometry, we made a commitment to the schools to
attend to the content of standard geometry courses and to
integrate this intervention into the standard school setting
and framework for geometry instruction.

Coverage of the standard curriculum was a concern throughout
the year. Teachers commented on the demands that this
approach places on class time and on the pressure that they
felt to cover the standard content. By the end of the year,
all three classes had covered the bulk of the standard
geometry syllabus. Many students commented that their
classes had dealt with topics in more depth than non-SUPPOSER
classes, and some students indicated that while the pace was
different, they covered the same material as other classes
("I think you learn pretty much the same. S<ometimes we finda -
ourselves ahead of other classes, then they might catch up

0"

The perception that the students in the experimental group
covered the standard curriculum is confirmed by the results
of geometry midyear and final exams. Teachers reported that
on geometry examinations in each school at the middle and end
of the school year, students working with the SUPPOSER
performed as well as, or better than, their non-SUPPOSER
counterparts. From this data we conclude that students in
the experimental groups learned at least as much geometry as
students in the comparison groups.

In addition, student learning in the experimental groups went
well beyond the standard geometry. Students demonstrated
understandings, skills, and behaviors that are essential for
creating mathematics and for taking an active role in the
learning of mathematics. These behaviors were observed in
the classroom and in student work, reported by teachers, and
confirmed by student performance on posttests.

For example, consider the skills and behavior involved in
working with definitions, making conjectures, and devising
proofs.




Definitions are the foundation of mathematical knowledge.

The guided inquiry approach makes apparent to students that a
definition is much more than a statement found in a book.
Students in one class generated definitions, presented their
definitions to the class, were forced to reconcile the images
in their heads with the words that they put down on paper,
and modified their definitions based on teacher- and student-
supplied counterexamples.

Across all the SUPPOSER classes, we observed, and students
and teachers reported, that making conjectures was not a
skill or activity that came naturally to students. Early in
the year, students were mired in data, worked mostly on a
trial and error basis, and were unable to isolate wvariables.
Teachers and students shared with us their frustrations about
making conjectures. By the end of the year though, nearly
all students were making conjectures on the larger scale
projects. The results of the posttest show that given a
situation dealing with the particular, SUPPOSER students
produced the sazme level generalizations or higher level
generalizations than the comparison group.

When presented with an unfamiliar geometric statement,
students were able to consider the statement in terms of
their existing knowledge and to gcneralize from the
statement. On one question on the posttest designed to
measure student ability to generalize, students in the
experimental group were 31 times more likely to produce a
higher level generalization when presented with a description
of or data from a geometric situatior.

There were examples of generalization on the argument/proof
test as well. Many SUPPOSER <tudents made arguments based on
congruence in quadrilcterals, a property that was not part of
their class work, but rather a property that they generalized
on their own from congruence in triangles.

Beyond the standard geometry ccntent and the mathematical
ingquiry skills, there were indications that students were
able to make visual generalizations. Studencs who worked
with the SUPPOSER were able to consider geometric shapes and
constructions in dynamic terms. We did not investigate this
systematically, but base this finding on the okservations of
research team members and teachers. One teacher reported
striking differences in the behavior of SUPPOSER and non -
SUPPOSER students working on the same review chapter at the
end of the year. "...[S]ltudents using the SUPPOSTR talked
geometry. Their approach was more visual and manipulative
... flipping,  “rotating,’ and ‘zooming’ were frequently used
terms." The ability to consider constructions and shapes as
dynamic relationships and not as static objects, the ability
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to censider the transformations of shapes in the abstract in
the course of a discussion (not at the computer or with
straightedge and compass in hand), and the emphasis on wvisual
manipulation could all be byproducts of working with the
SUPPOSER (and its capacities to generate random shapes, to
repeat constructions on different shapes, to scale, and to
make the construction and manipulation of geometric shapes
quick and easy).

The ability to prove generalizations is another essential
skill in the making of mathematics. There was some concern
in the mathematics education community that the introduction
of inductive reasoning and empirical work into geometry
instruction would undermine the learaning of proof. To the
contrary, on the argument,/proof test administered at the end
of the year, percentages of SUPPOSER and non-SUPPOSER
students producing informal and formal proofs were about the
same and did not differ significantly in five of six
comparisons. On one problem, the chances of a student in one
of the experimental classes making a formal proof were five
times greater than the chances of a student in one of the
comparison classes.

From our observations and review of student work during the
year, we see that while SUPPOSER students experienced some
trouble with proof, most were able in their year-end projects
to pr/ duce proofs, often formal proofs, for some of their
conjectures. In some cases Where students were unable to
prove their conjectures, it was because the conjectures went
well beyond the standard curriculum and proofs were difficult
to devise.

In sum, students who used the SUPPOSER in a guided inquiry
approach developed and demonstrated a sensibility and some
skills essential for creating mathematics. They learned as
much geometry as the comparison group, they significantly
outperformed the comparison group in their ability to develop
generalizations, and they were equal to and/or somewhat
be.cer than the comparison group in their ability to devise
informal arguments and traditional formal proofs.

2. LEARNING ABOUT LEARNING

In addition to their mathematics learning, students gained
new insichts into what it means to be active learners and to
be a member of a community of learners.

In a traditional classroom, the primary function of the
student is to absorb, not to contribute. This approach of
guided inquiry using the SUPPOSER was a departure from
previous learning expéeriences. It was an active process
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("... students were thinking, not just responding
mechanically, and knew that they could not just sit back and
let things go by."). For some students, being creative,
active learners was or became second nature; for others there
were frustrations and surprises. It caused students to
reflect on their roles as students and the role of the
teacher in the learning process. Th'y found that being
creative and productive learners and the resulting lack of
certainty was unfamiliar, difficult, and disconcerting ("

we are only students, there’s lots of stuff that we are not
sure of."). One teacher described the end-of-year
differences in student Pehavior: "Students seem more
comfortable with the mathematics and less reluctant to
explore, to make mistakes."

Cooperation, an essential strategy in a community of
learners, is not a hallmark of traditional math instruction.
In the beginning of the year, we observed very little
cooperation among students. Students did not seem able to
work productively with one another or as a class. Some of
the initial problems with student ccllaboration and class
discussions may have been the result of a lack of student and
teacher experience with a cooperative style of learning.

Over the course of the year, we observed the more effective
integration of individual and group learning. Discussions
became more productive and students seem to take a more vocal
and active role. By the end of the year, most students
seemed to appreciate the different, yet complementary
benefits of working in pairs and as a class.

B. Implementation

Conclusions about implementation include rerflections on
teaching, curriculum materials and problems, software,
hardware, and setting, and our guided inquiry approach.

Implementation - (Research questions)

The SUPPOSER as a software program

How do students perceive the SUPPOSER? Do they find
it difficult to use the SUPPOSER?

How do teachers perceive and use the SUPPOSER? When
do they use it? When do they put it aside?
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The guided inquiry approach
What effect does a guided inquiry approach have on
the teathing of geometry -- the content, the order in
which it is taught, the style in which non-inductive
material is taught?

What effect does the guided inquiry approach have on
the teacher-student relationship?

Do students’ expectations of teacher roles and
teachers’ expectati ns of student roles change?

Is there a shift in control over the content and
process of learning?

Do roles and relationships among students change?
What difficulties do teachers experience?

What difficulties do students experience?

1. TEACHING

The Role and Centrality of the Teacher

The teacher is the key figure in most learning environments.
However, the presence of a computer and software often raises
a question about the role and the centrality of the teacher.

In this approach there is in fact a significant shift in the
teacher’s role from what one normally sees in a high school
mathematics class. 1In guided inquiry, the teacher is not the
sole source of knowledge, direction, or energy in the
classroom. The teacher can shape the overall flow of the
curriculum and the learning process, but on a class-to-class
basis shares the control with the students. One teacher in
reflecting on this shift in control said that it was
essential that teachers using this approach be flexible, be
able to respond to issues as they arise, and to learn to
stand in front of a class and say, "I don‘t know."

Does asking students to assume more responsibility for their
own learning diminish the importance of the teacher in the
learning process?

In the extreme, we can restate this as a classical question
that has been contemplated in educational applications of
computers: Is an inteliigent tutor (in lieu of a teacher)
for guided inquiry using the SUPPOSER desirable, especially
in light of the many pressures and demands that the approach
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places on teachers? There are occasions when a tutor could
provide prompting on heuristics and strategy. For example,
one teacher found that student learning was improved by the
definition of a series of set inquiry steps -- "1l. Give
students the problem, 2. ...have pairs of students come up
with a paper and pencil diagram, 3. Put a drawing on the
screen, 4. Brainstorm," etc. Hcwever, we believe that such
a tutor is not a replacement for a teacher. We continue to
believe that the benefits of the approach and the learning
that it produces come not from the student-machine
interaction, but from the student-student and student-
teacher interactions.

Our response is based on our observations as well as our
beliefs. When using the SUPPOSER, teachers had a significant
impact on -students’® mathematical thinking processes,
attitudes, and wcrk habits.

On a trivial level, students copied teacher behavior. If a
teacher was careful in drawing diagrams, students showed care
in their drawings. If the teacher wrote data right on the
diagrams, students placed their data right on the diagrams.

On a more significant level, student difficulties with
conjecturing and both the negative and the positive ways in
which students coped with the difficulties seemed to be a
function of teacher style and response. In one class, the
observer concluded: "[The teacher] exposecd students to
effective mathematical thinking skills and problem sclving
strategies, she focused on logical arguments and visual

skills ... They had internalized some of the strategies that
had been modelled for them." In contrast, in another class,
the observer wrote, " ... students did what they were asked

to do, but no more. When asked to put numbers in a table,
they complied ..."

One teacher was explicit about being a role model for
students. From the outset, he wanted to be sure that
students understood that inductive learning was a serious
ent2rprise so he reports that he consciously "distanced
himself from this class to make it clear that this was not
just playing around." He felt that if his attitude was
serious, students would view the work and the process as
serious business.

Teachers were also quick to use students as role models as
well. 1In class discussions, they would identify effective
and productive student behavior. When work began on year-end
projects, we distributed to students a paper that received an
A+ in an honors g:=ometry zlass taught by a non-research site
teacher and it set the standard for student work in the
students® as well as the teachers’ minds.
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Working with the SUPPOSER in a guided inquiry approach was a
new experience and a new set of behaviors for students.
There was no backlog of images to draw on and expectations,
as discussed belcy may have been ambiguous, so modelling
becanme a powerful teaching device. From the student
perspective, mimicking may be a safe and an effective
strategy when the going gets tough and understanding is
elusive.

Adjustments and Demands

With a new pedagogy, a different learning process, and a
shift in role come adjustments and new dzmands. Here are a
just a few examples of essential changes.

First there is a need for a shift in attitudes. To succeed,
teachers must recognize students as creative and contributing
actors in the learning process. They must value and
encourage diversity of approach and thought in the
development of knowledge.

Related to these attitudes are the skills essential to
leading a discussion. With the guided inquiry approach,
discussion is a central activity in student learning.
Needless to say, discussion is not a keystone of traditional
high school mathematics instruction. Most high school math
teoachers do not have experience as leaders and moderators of
student exchange. They may not have the skills to draw on
student ideas and findings as a foundation for building
understanding among all students in the class.

Another major ad,jastment is in the areas of expectations
about and evaluatici of student learning. For one thing,
each period may not end with an objective met or an idea
wrapped neatly in students” heads. Objectives may be broad
and emphasize process as well as outcomes. DMany ideas may be
legitimate or at least worthy of exploration. And in most
cases, there will be more than one correct answer. One
teacher voiced her frustration saying that she found it
difficult to know what students "would be going away with."
Furthermore, it may be difficult to gcade or evaluate
individual students when they are working in pairs. This
same teacher was concerned that to find out what students
were "going away with," she would have to spend time (which
she did not have) working with students on an individual
basis.

To use a guided inquiry approach with the SUPPOSER, teachers

have to expand their notions of what students "go away with"
to include skills such as collecting data and making
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conjectures that heretofore had no importance. They need to
create or adapt new assessment strategies and techniques.

One productive strategy for assessment is to take the time to
work with and observe one set of lab partners while the class
is in the laboratory. There are also paper and pencil
options such as the pretest and posttest administered in this
research to assess students’ abilities to generalize and to
make arguments. Finally, it is important for teachers to
communicate to their students that expectations and outcomes
change over the course of the year as students’ mathematical
knowledge and inductive and deductive skills evolve. What
was considered exemplary work in October may be trivial or
irrelevant in May.

Finally, expectations of students and evaluation of student
iearning both influence how teachers assess their own
performance. The experimental group teacher using the
SUPPOSER for the second year made an interesting observation
about teacher expectations. 1In reflecting oxn the
disappointment she felt about her students’® performance, she
recognized that "the SUPPOSER provides no opportunitv for
evasion. In traditional geometry, students can get by with
memorizing theorems, axioms, and proofs. With the SUP®OSER,
a student cannot fake what he or she knows and it quickly
becomes apparent when and where a student is having trouble."

What are the ramifications of these changes for day-to-day
teacher preparation?

For one thing, teaching this way with the SUPPOSER requires a
large on-going investme~t of time. How much time?

One teacher suggested that a teacher should spend "one or two
hours avery night getting organized ..." She found it
impossible to plan in advance - "Even if you are prepared,
something iray happen in class thst you did not expect."”
Another sai-d that it takes "... initially ... ten hours per
week on the SUPPOSER, playing with the software, working on
the problems, trying to stay ahead of the class. "Teacher
reports from the end of the year indicate that these demands
decrease dramatically over *time. The experience is probably
more akin to the initial preparation and ongoing work
required to teach a graduate seminar the first time. What
does not decreawe as the year progresses or the second time
out is the amount of time and energy needed to review student
work and to respond to and to integrate findings from the 1lab
into classroom lessons.

In short, to be successful in this guided inquiry approach

requires a person who knows the subject matter, can function
as a leader and manager of a community of learners, who is
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flexible, and who has time for planning and preparation
throughout the year.

2. CURRICULUM MATERIALS AND PROBLEMS

Curriculum materials and problems are a critical component in
any instructional process. Materials and problems focus
attention and energy and guide students in the application,
integration, and extension of knowledge. In this study, we
gained new insights into the critical and complex roles that
problems and written material play in an "inquiry" approach
that draws heavily on an open-ended software environment such
as the SUPPOSER.

The SUPPOSER is a tool with a set of capabilities; it has no
explicit curriculum content or instructional framework. The
utility and power of the SUPPOSER become apparent only in the
context of a task or a problem. So the curriculum materials
and problems must define the problem and the task for
students in terms of the geometric content and provide
students with directions to guide their inquiry.

In designing problems, we looked for challenges that would
engage students and illuminate topics in the curriculum. We
constructed problems that would yield more than a single,
easily defined answer, that did not ask students to rephrase
or to prove a given assertion, or to reinvent the wheel. We
wanted students to be able to pursue or explore a task in
more than one direction, but not to be frustrated by the
open-ended nature of the problem. The tasks require students
to use both inductive and deductive skills. Directions were
designed to be explicit about th-~ process for reaching a
solution without providing step by step or keystroke by
keystroke directions. They suggested approaches and
mechanisms fcr organizing and summarizing results and
findings.

In one respect, the content of the problems did not differ at
all from th(se in a textbook. The SUPPOSER pi 'blems
addressed the same topics in geometry and were compcsed to
allow for easy integration with the textbooks being used in
the classes. In another respect, the content was ve.v
‘different. In traditional geometry instruction, definitions
and theorems define the curriculum. The presence of a tool
such as the SUPPOSER makes other kinds of learn.ag possible
and this inquiry must be shaped and supported by the
problems. So in addition to geometric content, we must teach
inductive skills as well. We chose to let the problems bear
this burden and provided no teacher or student materials that
dealt explicitly with the nature of induction or ingquiry.
Teachers indicated that a set of materials or exercises that
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forused on question posing, drawing inferences, and making
generalizations, for example, might be useful and provide a
stronger foundation for the approach.

As the three classes worked with the problems, we found that
different classes, students, and teachers need different
types of instructions and different kinds of problems.
Reactions to the problems varied from teacher to teacher and
from class to class. Some commented that instructions were
not clear enough ("the students had many questions about what
they were supposed to do ..."); others said that instructions
were not sufficiently detailed or structured; while still
others complained that the problems were too structured.
Since the problems are the instruments for both the content
and the pedagogy, it is not surprising that each teacher
feels the need to adapt the materials to his or her ends.

Our findings underlined the centrality of curriculum
problems to the success of this approach. Therefore, we are
preparing a paper on problem structure and problem posing
which begins to illuminate the characteristics of successful
problems (see Yerushalmy and Chazan (1987) and Yerushalmy,
Chazan, and Gordon (in preparation)). A Kkey element in
effective problem design is to differentiate between the
definition of the task and the process instructions. The
task must be well defined. The objective of the problem must
be clear to students without giving away the outcomes.
Process instructions must also be well defined. Approp.iate
strategies for managing and structuring inquiry must also be
apparent to students without detailing each step of the way,
keystroke by keystroke.

From the more in-depth analysis of problem posing and the
structuring of tasks, we draw specific considerations for
developing problems that will meet teachers’ and students’
needs and mazimize learning.

3. SOFTWARE, HARDWARE, AND SETTING

Students experienced no problems with the software. They
found it easy to learn and easy to use.

Teachers and students used the hardware a.*d software in a
variety of configurations. Students worked at the computer
individually, in two’'s, and in three’s. Teachers used single
computers for demonstration and illustration, as the
electronic equivalent of "sending a student or students to
the blackboard,” and as a reference during classroom
discussions. We rema.n convinced that the most productive
configuration for student investigation is two students per
computer. Most students who had lzb partners agreed that
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this was a useful arrangement, often matching complementary
interests and skills, or strong and weak students.

The most consistent concern voiced by students as welili as
teachers was how to integrate the various elements and
aspects of this approach.

There were difficulties in relating inductive and deductive
thinking, c¢lass work and lab work, textbook and SUPPOSER
problems, homework and school work. For some, the enturprise
lacked logic and consistency. They would have preferred to
learn geometry one way, or the other (e.g., all classroom or
all lab, all text or all SUPPOSER), and found the combination
and the back and forth confusing. The security of starting
at page one and moving straight through the book was missing.

It is interesting to note that the problem of integration was
greatest for the class that met in a standard classroom and
worked in a computer lab on another floor, that it was less
of a problem for the class whose computer lab was down the
hall, and that it was almost no problem in the class where
the computers were right in the room. In those classe where
the lab was separate, students said that it was difficult to
predict when they would be working in the lab. There were
times when students appeared in one place only to find that
they were scheduled for the other.

4. A GUIDED INQUIRY APPROACH

A guided inquiry approach with the SUPPOSER calls for
learning and mastery in three areas: geometry, inductive
reasoning, and deductive reasoning. Students need to learn
about the properties and relationships among points, lines,
and shapes; they need t» learn strategies and structures for
inquiry such as observation, conjecture-making and testing,
data collection and anR”lysis, and generalization; they need
to learn about informal and formal arguments and proof; and
they need to learn about the relationships among these three
areas.

Over the course of the year, we suggested a linear approach
for the teaching of inquiry stratedgies aud skills,
emphasizing data collection and organization at the outset,
then a focus on conjecture-making and finally introducing
argument and proof. However, in retrospect, in communicating
this approach to teachers and to students, we may have
accidentally reinforced the comm.nly held misconception that
inquiry itself proceeds in a linear fashion, i.e. a process
in which data is collected and analyzed, a conjecture
derived, and a proof devised.




On the whole, this is the concept of inquiry that teachers
presented to their students. For example, the linear concept
is evident in teachers’ instructions to their classes: °
collact data in the lab, write conjectures as homework. We
believe that this characterization of inquiry may have
contributed to students’ problems with making conjectures.

Our concerns about the linear characterization are informed
by critiques from two perspectives.

Philosophical studies about the nature of scientific inquiry
suggest that the progression from data to conjecture is
incorrect and that the proper order is from the making of an
initial conjecture or hypothesis to the collection of data,
and then to the refinement of conjecture. In this view,
deciding what data to collect Jrows from an initial
conjecture.

Another critique suggests that the linear model obscures the
differences between representations in data collection and
representations in conjec?'ire and proof. Objects on the
screen of the SUPPOSER are specific and represent only
themselves. The measurements taken and other observations
made are good for that triangle only. To prove a statement
about a specific case requires only verification.
Understanding is not necessary; a measurement is sufficient.

In contrast, a conjecture applies to a class of objects. It
is defined in terms of a specific class of objects. The
drawing that accompanies a conjecture is a representation of
. the class, a schematic drawing, not a representation of the
particular object drawn. With appropriate notations, this
type of sketch is 2 symbol.

A ; D B

-

The language that describes the conjecture is formal (e.g.,
In any 2BC, with a median from vertex C and medians frc
the foot of this median in each of the sub-triangles, two

. pairs of congruent triangles are created.).

&
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Proving a conjecture requires understanding, drawing on and -
connecting other known facts. Verification is not
sufficient.

It is therefore important to recognize that the three parts
of the linear progression do not operate at the same level of
generalization. There is a leap of generalization from data
about a specific case to a conjecture about a class of cases.
There is a second leap from conjecture to the understanding
of a phenomenon represented in a proof.

From these two critiques, we can gain scme insights into the
difficulties that students encountered in making conjectures.

For exainple, we thought that offering students charts and
tables that specify which data to collect might help them to
make conjectures. In fact they did not. One reason may bde
that the desired outcome, the conjecture, was of a general
level, yet the problem (e.g., find the ...) was posed in
terms of data at a specific level.

In contrast, a problem which defines the task as a geometric
relationship or concept to be investigated starts out on a
ger2ral level. Students gather data on the empirical,
specific level to inform their inquiry, but find it easier to
return to the general level since that is the stated
objective of the problem.

In this framework, conjecturing is difficult because of the
change in representations. Students must learn to appreciate
that they are making a transition in moving from a generally

phrased problem to the specific and then back to the general
by making a conjecture.

C. Recommendations for the Future °

1. THE APPROACH

With these understandings, how can we support and teach a
guided inquiry approach with the SUPPOSER more effectively?

An Alternative Characterization of Inquiry

We must avoid characterizing inquiry as a linear process. We
must convey to teachers and to students that inquiry is an
iterative process between the specific and the general. We
should be clear that this involves two transitions, one from
“the specific to the general, the other from the general to
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the proof. To emphasize the .. n-linear nature of inquiry, we
might suggest that studen. ccnjecture about a relationship
before measuring.

A Greater Emphasis on Teaching Inquiry Skills

We must concentrate more teaching time and effort on
strategies and structures for inquiry. From the outset,
problems should call for all aspects of the inquiry process.
They should call for students to be explicit about why they
do what they do, what they find, what sense they make of it,
and why it is so. They should emphasize generalizations,
geometric relationships, collecting data, and asking "why?"
from the first day. >roblems should always focus on issues
that are well-defined, but that can be generalized to other
topics (either as part of the problems or by the teacher) and
invite further inquiry.

Incorporating a Developmental Scheme for Teaching and
Learning About Inquiry

Although a linear characterizaticn of the inquicy process is
incorrect, it is essential that we take a linear view of the
teaching and learning of the inquiry process. Most students
have little experience with learning in an inquiry approach;
in fact, most students are made uncomfortable by the new
roles and responsibilities that come with being creative and
active learners. In planning for future work, we rnust pay
careful attention to the ways in which we introduce and
nurture new concepts and skills.

One way to approach this is to think in terms of outcomes and
then to consider the most effective routes to the outcomes.
Clearly, by year’s end we would iike students to understand
and to be competent in every aspect of the inquiry process
and inquiry should be far-ranging and require proof.
Students should experience the approach as a whole from the
beginning of the year with problems containing some form of
conjecture, data collection, generalization, and proof.
However, it may be worthwhile to constrain inquiry at times
to focus on a specific piece of geometric content or
heuristic device. The requirement for proof may evolve from
always asking "why," to demanding that conjectures be stated
in "if..., then..." form, to requirements for two column or
paragraph proofs.

Or consider the order of class activities in this inquiry
approach. By the end of the year, we believe that it is
desirable for work on problems to begin with individual
inquiry (or in pairs) in the lab, to proceed to students
writing out conjectures, data, and proof, and to conclude
with class discussion. But demanding that it be this way
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from September without variation is both unrealistic and at
times, not desirable. A teacher may decide to alter this
process depending on the problem or the skill being taught.
Scheduling may be influenced by holidays, pep rallies, or
standardized tests. Every week need not be composzd of one
period of lecture, two periods of lab work, and one or two
periods of discussion.

The role and the prescence of the teacher will have to vary
over the course of the year as well. By the end of the year,
the teacher should serve as a resource for inquiry and assume
the role as manager of the community of lear. 2ars. However,
at the beginning it may be most effective to work problems as
a class, using the SUPPOSER as an electronic blackboard.
These early problem sessions can be used to model inquiry
techniques. t may then be appropriate to move to discussion
of the problem task, twenty minutes of independent work,
followed by a review of strategies use« and findings.

Preparing Teachers for This Approach

Earlier in the conclusion, we described the new demands and
pressures that this approach places on teachers. We wondevr
whether we are asking too much. There is no question that a
guided inquiry approach using the SUPPOSER is difficult and
requires hard work. During the year, we watched teachers
struggle with many problems and devise creative solutions
that were appropriate for their skills and style, their
students, and their settings. Despite the difficulties and
the obstacles, the performance of students was impressive.

So how can we best prepare and support teachers to use this
approach?

First, from the outset we must be expllicit with teachers
about the philosophical underpinnings of this approach:

(1) Students can contribute actively to the learning of
mathematics ar . the traditional syllabus. Coverage
of content need not be sacrificed for studert
exploration and investigation.

(2) Geometry is not a closed body of knowledge and
mathematics is not synonymous with proof. It is
essential to understand what it means to learn
something and to know something in mathematics.

(3) The primary role of the teacher in this approach is
to support and integrate student inquiry and ideas,
not to be the repository and transmitter of all
knowledge.
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Teachers need an opportunity to think about these ideas and
to consider them in light of their own classroom practices.

Teachers need a curriculum that parsllels the curriculum for
students. To teach this approach effectively, a teacher must
learn about this type ¢f ingquiry and learn it directly.
Exemplary teaching behavior must be modelled, but teachers
should also experience directly the satisfaction, the
excitement, and the frustration of creating mathematics and
being a member of a community of active learners.

Teachers need opportunities to try out and practice new
teaching behaviors on their own and under observation by
supportive colleagues. Finally, they need opportunities to
share and to exchange their experiences.

Hardware

Access to hardware is a major factor in the effectiveness of
this approach. For future efforts, we recommend strongly
that hardware be available for a variety of instructional
purposes in a variety of settings.

First and foremost, there should be one location for lab
work, discussicn, and lecture. We believe physical
integration will go a long way toward alleviating confusion
about scheduling and the overall structure of the course. It
will also reduce the pressure on the teacher to be sure to
£ill lab sessions with lab work, to bring discussions to a
premature close since the next class is scheduled for the
lab, or to defer discussions of issues that surface in the -
lab until the class meets again in a classroom. The presence
of .the computers in the classroom provides flexibility and
opportunities “{or spontaneous investigation. While
conducting the various activities of the approach in a single
setting will contribute to the integration cf the
instructional and learning experience, this alone will not
solve the problem of students confusing when and where
inductive or deductive behavior is appropriate.

There should be a large monitor or several stra*“egically
placed small monitors so that teachers can carry out
effective demonstrations or solve problems as a class.

A few machines in study halls or the school library would be
an addition welcomed by students. Student investigation is
often limit.d to the length of a class period. Having access
to the SUPPC3F~ during free periods or after school would
allow students greater freedom and possibly give teachers the
added flexibility to assign SUPPQSER work outside of class
time.
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Overcoming Isolation

We believe that learning for teachers as well as students is
a social process that benefits from exchange and sharing.
This year there was only one teacher in each school involved
in this study.

Teacher meetings every three weeks or so were designed to
help overcome this isolation, but they were insufficient.
Initially teachers needed practical and day-to-day help,
clarification about expectations, and support. Therefore, at
the meetings the communications tended to be teacher to
recearcher or researcher to teacher, not teacher to teacher.
One factor that inhibited teacher to teacher communication
was the perception that each class, school, anc system were
unique. This was true in cases such as lab schedules and
course requirements. But from our perspective, what they had
in common far outweighed their differences.

Exchange would be more likely, easier, ¢nd more productive if
more than one teacher in a school were using the approach and
the software. We can envision exchanging ideas, experiences,
worksheets, and evams; colleagues observing each other’s
classes; and even team teaching.

By promoting sharing and exchange, we don’t mean to imply
that all SUPPOSER classes in a school should look the same.
We expect that each teacher will adapt the approach, the
tvols, and the materials to his or her needs and students.

Similarly, students working with the SUPPOSER felt different
from their peers. They found it difficult to gauge what they
were learning and how much they were learning because they
had no basis for comparing theirs experiences with other
geometry students. We kncw that students this age find it
uncomfortable to be different. So having more than one class
using 'w... . approach in a school would also reduce student
isolation.

I 2. FUTURE RESEARCH

In the course of our research, we identified a number of
topics and concerns that are important for th: future
development and study cof this approach, but that we could not
pursue within the scope of this study.

Simitarity: Teachers had the most difficulty teaching the
topic of similarity. The nature of the difficulties and how
the software and problems might overcome them is not clear.
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Proof and Generalization: One way to focus effort on inquiry
skills as suggested above is to design units not on the basis
of geometric content (as we did), but rather as occasions for
exploring and discussing specific inquiry skills and
strategies. Two possibilities are: generalization and proof
versus verification.

Small Units: The study this year focussed on a full year
intervention. It would be profitable te¢ study the use of
smailer units on topics such as similarity, proof, and
generalization and the costs and benefits of shorter
interventions. .

Teacher Change: It is apparent that teachers are the key
factor in the effectiveness of the approach. A more detailed
study of the changes and the development of teachers
implementing this approach would be valuable.

Electronic Networking: We assume that more communication and
exchange among teachers will produce more effective
implementation of the approach. We wonder whether electronic
networking may provide a cost-effective link for connecting
weachers.

Tihe Approach in Terms of Student Charac*eristics: 1In this
study we worked with students of different ability levels,
but we did not look specifically at the qualitative and
quantitative differences in student abilities. From our
observations, from the interviews, and from teacher reports,
we know that there are differences among students i
understanding, approach to inductive work, preference for
visual over numerical data and represencations, to name a
few. It will be a difficult task, but an impocrtant one to
design a study to identify the differences among students and
to investigate conditions in setting, activities, and
materials as they influence student performance.

Transfer, Attitudes, and Retention: We were only able to
scratch the surface on these issues and believe that it is
important to inv’ stigate the longer term effects of this
approach on students. We would like to investigate the
impact of this approach on student attitudes towards
mathematics and mathematics learning, whether and to what
extent this style of learning/teaching carries over to other
mathematics and non-: .chematics learning experieaces, and
whether and to what extent students retain geometry knowledge
at leacsi one year after the experience.
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3. A FINAL NOTE

To this point, we have focussed our conclusions on our work
with the SUPPOSER this past year in three classrooms. Now we
step back from the specifics to reflect on the experience at
a more dgeneral level.

Having spent a year working with teachers and students,
introducing computers and tool software into mathematics
instruction, using a strategy of guided inquiry, what is the
news?

First of all, there is nc question in our minds that the key
element in the use of computers and software in instruction
is educational philosophy and pedagogy.

The news is not the technclogy. The computer is a versatile
tool that simply processes binary numbers and as such can be
a useful instrument in the service of any pedagogical
strategy. It is a mirror, reflecting the educational values,
objectives, and cireams of the person who holds it.

The news is not really the software. Certainly software may
be designed to support a particular pedagogy, and some
software will be more congenial to some pedagogies rather
than others. But in the end, it is the teacher who defines
the student - software interaction. The software is not
sufficient.

The news is what happens in the :lassroom.

In the pedagogy which we call guided inquiry, the teacher
introduces content which is illuminated and modified in light
of student inquiry and supplemented and complemented by the
discussion of student findings. The teacher defines the
focus of inguiry by posing a prvblem for the class. The
students working in groups of two or three investigate the
problem at the computer. These groups then join together as
a class led by the teacher to share their findings and
results and to develop a collective understanding of *the
problem and the issues at hand. The construction of knowledge
is .nriched and is enforced by a collaborative process among
students and between students and teachers.

We have described our findings; here we Zocus in on one
particular effect that took us by surprise.

We were not surprised that the guided inguiry approach

required a deeper understanding of content by the teacher.
And once we became aware that most teachers and students had
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little experience with inquiry, we understood the need to
address explicitly inquiry skills such as making conjectures
and making generalizations. But we did not anticipate that to
create a community of learners demands well honed
communication skills and new attitudes about the flow of
information in the classroom. .

A significant example. A guided ingquiry approach built around
an open-ended softwar tool calls for a shift in intellectual
auchority in the classroom. Authority must be shared among
teachers and students. There may not be one right answer to
a problem, but rather a collection of results some of which
may ke more right-headed or wrong-headed than others. 1In the
end though, the arbiter is persuasise argum=it, not an
explicit or implicit "Because I say so!"

In this context, communication and discussion are
fundamental. Using clear and precise language to communicate
mathematical ideas is essential. Proof becor.es the language
of argument and its utility is evident. 1In the context of -
discussion, teachers elicit opinions, acknowledge and -alue
diversity, encourage creativity, build powers of argument,
and facilitate resoluticn of different points of view.
Students learn to listen, to respect the contributions of
their classmates, and to communicate effectively with one
another, not just with or through the teacher.

So what started out as research on the use of the technology
to teach mathematics in fact became research on the
implementation and the effects of guided inquiry. What began
as an examination of the role of the computer and the
software became a study of the knowledge, skills, and
attitudes of teachers and students and the interactions
be*tween teachers and students, and among students. We
caution others from the outset to maintain a focus on the
pedagogy, the teachers, and the students, and to keep the
proper perspective on the computer and the software as
important tools, but nonetheless as tools, in service cof
learning.
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Appendix A

YEAR LONG CURRICULUM PLAN, SELTCTED FROBLEMS
FROM PROBLuM SET #1, AND SELECTED YEAR-END PROJECTS

Tentative general plan for the whale school year:

Exercise sets: Other work: Weeks:
1-4
Yefinitions Parallel lines
Computation SD*
Data organization 5-6
Parallei Congruency 7-8
Congruency SD
Proofs
Inequalities Proofs 9-10
Convincing arguments Inequalities
Tougher problame The same topics 11-18
on triangles: as with the
Special points in Supposer.
trinagle.
Right triangles:
special and trigorometry.
Similarity.
Quadrilaterals. The same: about 19-20
triangles as
before.
Loci and constructions. Quads. 21-2,
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Not sure yet

if Sup-circle

will be available

Problems involve

generalizations

between all parts

of the curriculum.

*Supposer discussion.

L.rcles

Volume

Circle computations.

Leftovers...

23-26 .

27-32




Exercise set #1:

Timing:

‘Four lab periods within two weaks.

The teacher may decide to divide it into two sets and then check
it after two periods of work. This way i. will be possible to

discuss the work from the first two labs.

Content:

_Definition of triangles and elements in the triangle.
-Computation of angles and areas.

-Exterior angles.

-Sum of angles in a triangle.

Teaching goals:

(1) Different ways of organizing data (the

worksheets are organized in a certain way but if students
igentify alternatives they should be considered).

(2) Orgenizing daia so that scudents can take data from the lab

and work on conjectures at home, and discuss their finding in class.
(3) In their work, students may start to think about what
constitues a definition. Help them develop criteria for

'good definition', 'better definition' etc.

(4) Making conjectures.

Non Supposer work in perallel:

Parallel lines: computations.
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Triaagles
Elements

'~ The SUPPOSER lists the following terms under the Draw uenu: median, altitude,
angle bisector, perpendicular bisector, perpendicular, midsegment, and parallel.
Use the SUPPOSER to assign meanings to each of these terms.

A median

An altitude

An angle bisector

.

A perpendicular bisector

A perpendicular

. A midsegment

A parallel
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The SUPPOSER lists the following napes for triangles:
isosceles, and equilaceral. Use the SUPPOSER to assign meanings to each of

these names.

A right triangle is - triangle

right, acute, obtuse,

Triangles

An acute triangle is a triangle

.

An obtuse triangle is a trizngle

An isosceles triangle is a triangle

. An equilateral triangle is a trclangle

93

N




.’

Triwngles

Use the SUPPOSER to find the sum of the measures of the angles in at lesst four
different triangles. Draw the triangles and indicate their angle measurement.

Drawings of/\ABC m/ ABC

m / BCA

m £ CAB

State a conjecture about the sum of the measures of the angles in any triangle.




Elements

E

/\ABC is obtuse and AD, BF, and EC are altitudes. A student claims that there are
two angles (neither are right angles) that wili alwayc be congruent for any ohtuse
txiangle and its altitudes drawn like those above. Name the two angles that are
congruent and write a convincing argument.

’




a)

~ .
R c D

»
4

LBCD is called an exterior angle for AABC. Conject;xre how the meaaure of
exterior /BCD is related to the measures of the interior angles of the triangle.

Drawings of )ABC m/BCD | wLBAC ‘mZACB | msCBA
-AcuteA ABC™
] ]
ObtuseAABC 3 It
 sagie Aac |

Isosceles /\ABC A

Others

Conjecture




Every triangle has thres exterior angles. Yor example, LBCD, (EBA, and [FAC
are exterior angles for AC;ABC.

E
' 8

A >
c D
=

Do the measures of the three exterior angles for all triangles have anything
in common? If so, what?

Drawings and data

fr
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g).

CF is the angle bisector of LACB, CE is the angle bisector of ZBCD. Are the
angle bisectors ralated? 1If so, how?

/

) /
/
F\./L\’
~ /
\\
A (o

"y
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Project #1

Circumscribe AABC with a circle (center D). Repeat the construction on different
types of triangles and record the diagram in the table below:

Tvpe of triangle Diagram

i
Conjecture about possible relationships between:

a) The location of the center D relative to the :riangld;

1

T e LR ol et

‘)::The relative size of the circle and the tr;angle: L <.

- - PES
—— W P SAT A kA Ps 0 o B
——— s o e

c) The properties of point D as a special poizt of AABC:
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Projéct #2:

A line segment inside a triangle can divide a triangle into two similar triangles.
In some cases these two traingles are also similar to the original triangle; in other

- cases, the line segment only creates one triangle which is similar to the original
triangle.

a) Draw different kinds of line segments (use options of the Draw and Label menu)
to create some of the above relationships.

Provide necessary information in the table below; piace check marks in the appropriate
columns.

Two similar A's Three similar A's

Drawing 1 Type of ‘ Type of
Triangle i Triangle

3
’

rmens WA w—n et
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Project #2

a) This problem asks you to describe different methods for drawing a triangle gimilar

to but inside AABC such that the two triangles share no points in common. Provide
data to verify that your methods work.

b) Draw the sides of the new triangle inside AABC such that they are equidistant
from the corresponding sides of AABC.

Ex k—r\ ot

pa\

0‘.

,;ﬂ 'c)% Tﬂe new triangle is located anywb*re inside AABC. "

- . . - - = < msarnd
——— . L
e e

- :XA.\- ‘4'-
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Project #4

a) Draw an equilateral AABC. Subdidvide each side into three equal segments.
Connect the vertices of AABC to the corresponding points of the subdivisionms.

Label the three intersection points circled on the diagram below.

These three intersection points together with the vertices of AABC form a star.
State conjectures about the relationships among the triangles inside the "star,"
among the triangles outside the “star," and between the triangles inside and
outside the "star." List conjectures about any other relationships that vou
discover.

b) Do the conjectures you listed for (a) hold true when ‘this, construction is
repeated on other types of triangles? Which ones hold true for which triangles?

L 4
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Project #5

a) On an acute triangle, draw three altitudes. Labei G,as their poiat of inter-
. . section. Now reflect point G in each of the three sides of AABC producing points
H, I, and J. Draw ADEF and &HIJ. Starte as many ce¢njectures as you can about
the relationships among the points, segments, angles and triangles. Repeat the
construction for other types of triangles?

b) Repeat the procedure, except this. time instead of drawing the three altitudes,
draw the three pezpendicular bisectors.
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Appendix B

MIDYEZR TEACHER INTERVIEW SCHEDULE

What has it been like to teach with the SUPPOSER?
How does this relate to your expectations?

What is different? What is harder? What is easier?
What sorts of demands has this approach made on you?

How would you rate the performance of your students? How
have your students reacted to the experience?

How can we prepare teachers more effectively to use the
SUPPOSER? What kinds of training and support would you
recommend for teachers using this approach?

What are your plans for the second semester? How much do you
intend to use the SUPPOSER?

What would you do differently next time?




Appendix C
STUDENT INTERVIEW SCHEDULE

Suppose a kid came up to you and said that they were thinking
about taking this geometry class next year. They want to
know what it is like to learn geometry using the computer and
the SUPPOSER.

What would you tell them?

What was hard? What was easy? What was different?
What was it like to be taught with the SUPPOSER?

Did the experience change over the course of the year?
What was your experience working in pairs on the computer?

Does the work you do on the computer/SUPPOSER relate to work
in class? To your textbook? To homework? How?

Do you think that you learn more or less using the computer
and the SUPPOSER?

Ask about work on year end projects: Which project? What
have they done? Describe the experience.

Do you like learning this way?
What are your plans for math for next yecar?

Has this experience had any effect on your thinking or work
outside of geometry?

If you were teaching this course next year, what would you do
differently?

When do you think geometry was invented? When do you think
the last discovery in mathematics was made?

Anything else that you would like to talk about?
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Other significant differences between the two groups are
presented in Appendix H-3. The results indicate that
SUPPOSER students changed more aspects of the given
statement in making their generalizations. Their
conjectures were more original, and finally, they gave
significantly more arguments to support their
conjectures. Students in the experimental classes were
15 times more likely to give a supporting argument than
students in the comparison classes.

Conclusions

To summarize, at the end of the year there were two important
and statistically significant performance differences between
the comparison and experimental groups. Most importantly,
SUPPOSER students produced higher level generalizations on
two out of three questions on the posttest. Second, students
in the SUPPOSER classes produced more arguments than the
comparison classes on the posttest abstract question, though
no arguments were requested.

One of the concerns about teaching with the SUPPOSER
originally raised in the research community was that students
who study geometry empirically would remain mired in the
empirical and would not recognize the need for proof. Our
findings do not support this contention. On the contrary,
our findings indicate that an empirical approach tc geometry
may make the need for proof more apparent to students than a
purely deductive approach.

In order to examine the issue of proof more closely, we now
turn to the results of the argument/proof test which was
explicitly designed to study this issue.

2. STUDENT ABILITY TO PRODUCE PROOES

From the generalization/conjecture posttest, we learned that
students who used the SUPPOSER produced more supporting
arguments vhen such arguments were not explicitly requested.
However, people have contended that when asked to produce
proofs, students who use the SUPPOSER will construct fewer
proofs of any kind than their counterparts in traditional
geometry classrooms. After all, they reason, students in
SUPPOSER classrooms spend a significant portion of the year
working empirically with data and doing informal proofs.
Therefore, the proofs that they construct are more likely to
be informal in nature. At the very least, this argument
leads us to expect that the SUPPOSER students will do fewer
formal proofs than students from a traditional classroom.

To explore the relationship between proof and empirical work
further, we administered zn argument/proof test to two of the
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comparison classes and to all three of the experimental
classes. The objective of the argument/proof test was to
determine whether SUPPOSER students would produce fewer
proofs, particularly fewer formal proofs, than non-SUPPOSER
students.

In this section, we outline the design of *he tests, the
scoring system, and then present the results of the test.

Test Design

The argument/proof test consisted of three problems, each
presenting two true statements from plane geometry
accompanied by diagrams (see Appendix I for a copy of this
test). The instructions explained that both statements were
true and asked students to provide arguments or support for
one of the two statements. Students were free to choose
whichever statement they found more convincing.

The statements in the first problem were familiar to all
students and were a part of the curriculum studied in their
classes. In the second problem the statements were
generalizations of material studied in class. The statements
in the third problem were new material, not covered in the
curriculum. The statements were not matched in any other
ways.

Scoring of the Test

The argument/proof test was scored on twe¢ variables, scored O
or 1l:

FORMAL - whether a formal argument was attempted;
INFORMAL - whether an informal argument was attempted.

In analyzing the results of the argument/proof test, we
collected and compared the scores of the responses of the
experimental and comparison grcups for each of the three
questions on each of the three variables. Once again, we
uced a chi-square analysis to test for statistically
significant differences. Specifically, we compared the
frequencies of the two variables INFORMAL and FORMAL by
experimental and comparison groups for each question on the
test.

Results
Summary charts of the data on the number of formal and

informal arguments offered by students in the different
c.anses are presented in Figure 2.




Appendix D~1

GENERALIZATION/CONJECTURE PRETEST

INSTRUCTIONS

These exercises and the results will have no bearing on your
¢ 'ade. It is for research purposes oanly.

1. Please write your name ou each piece of paper that you use.

2. There are four problems and you have approximately thirty-five
minutes to work on them. NDon’t feel that you have to complete ali
four problems. If you only have time for two or three, that is
fine,

3. Each problem (s on a separate page. If you need additional
space to work on a probiem, either use the back side of the paper
or ask for additional sheets, Just be sure that the number of the
problem and you name appears on every sheet.

HAVE FUN!
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NAME

Statement 1:

The numbers on the diagrams below represent the measures of angles,
lengths and areas.
For example: The length of AF is 3.85
The angle CAD is 41 degrees
The area of triangle CDG is 2.1.

Diagram 2

List az many significant connected statements as you can make,

7




NAME

Statesment 23

The right triangles on the grid below have 3, 6 and 8 points on their

perimeter.

List as many significant connected statements as you can make.

V . |
|
: |
|
|
. |
|
|
I
x 4 - - - - - . - -
[ ] [ . . ’ ¢ . ¢
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NAME

Statement 3:

A line which passes through the center of a square and is parallel to

two of its sides, divides the area of the square “ato two equal areas.

List as many significant connected statements as you can.
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NAME

Statement 43

P, Q, R are points on the sides of triangle ABC.
In diagram (1), triangle ABC and triangle PQR are both equilateral,

In diagram (2), triangle ABC is equilateral, triangle PQR is noc.

Diagram (1) Diagram (2)

|

|

| 1

List as many significant connected statements as you can.
C ¢ !

' JAVAN




Appendix D-2

GENERALIZATION/CONJECTURE POSTTEST

Problem I:

There are five drawings below. On each drawing, you are given the
lengths of the sides of the triacngle. In addition, underneath
each drawing you will find listed the perimeter (p) of the
triangle, the area (a) of each triangle and the radius (r) of the

inscribed circle,

B \ jl

2 f:ISZq
8 s a= [°
F F =13
pe1?
az/0
r = le

List as many significant connected statements as you can.
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Problem II: .

In each of the following triangles the sides B and AC are divided
in the same way. In one case you are given information about
angles. In the other three cases, the numbers on the diagrams
represent lengths.

¢
\ c
158125
8l 51 ¥ s, h B 2297 Gt 7

List as many significant connected statements as you can.
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Problem I11I:
In the diagram below, ABC is a right triangle and D, E and F are the
: centers of the three half circles which are on the sides.




Appendix E-1

SCORING GENERALIZATION/CONJECTURE (ESTS

Illustration of Scoring Scheme for Levels of Generalization

In order to clarify the scoring of the levels of
generalization of the students” statements, we will present
an ordered list of student generalizations for question one
and question three on the posttest. We will point out
differences hetween the levels and the criteria used to score
the conjectures.

POSTTEST QUESTION ONE
{Note: These statements are quoted from students’ papers.)
Level O

"The first triangle is isosceles,the second has lengths that
are in order, the third the lengths go by threes."

Level 1

"The perimeters are odd numbers. In the fourth and the fifth
triangles the areas are equal but the perimeter is off by
about two."

Note: These first two levels are a more advanced version of
repeating the given than students wrote for the
pretest. In the pretest, they literally listed the
numbers that were given in the problem. At the end
of the year, they give descriptions of the given.

The higher levels are distinguished by use of general
language, e.g. "odd numbers".

Level 2

"The closer the inscribed circle is to point C, the smaller
the radius, the farther away it is the larger the radius."

Note: It is not clear if this is a general statement or
only a description of a phenomenon in the data on the
page.
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Level 2

"The perimeter of the triangle does not directly affect the
area of the triangle."

Note: Again, it is not perfectly clear that this statement
is a generalization, however the language is getting
more general ("the triangle").

Level 4

"Formula = To find Radius = take the smallest and the second
smallest side then divide the product (sum) of side a and
side b divided by the largest side so that would show like
this side a + side b/side ¢ = radius c¢f circle inscribed in
triangle."

Note:: Level 4 mentions that the formula works for a "circle
inscribed in a triangle". It is clear that we have a
generalization.

Level 5

"In a triangle with an inscribed circle the circle size
depends on the largest angle.”

Note: Level 5 is distinguished by the words "in a
triangle"”, whereas levels 2 and 3 do not explicitly .
say that their conjecture is true for any triangle.
Those conjectures may only be true for the specific
cases given in the statement of the problem.

Level 2 is really about angles, though it does not
explicitly state that it is. In contrast, level 5 is
the same idea stated more clearly. Level 2 also uses
the specific lettsrs of the diagrams and does not use
the more general "largest angle"”. In that respect
the level 4 conjecture is interesting. It creates a
system to label the smallest, medium and largest
sides of the triangle.

POSTTEST QUESTION THREE

Level O

"AB, BC, AC are diameters."

Note: Simple repetition of the given. .
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Level 1

"Segment AB appears shortest, segment AC appears middle
length, segment BC appears longest."

Note: This statement is dependent completely on the diagram
that accompanies the problem.

Level 2

"The semicircle BA and AC, when added up their areas equal to
BC. "

Note: Again, it is not clear whether the conjectures are
truly general. 1In addition, this conjecture is
directly related to the school curriculum and does
not change any relationships. It is the ‘obvious’
conjecture for the problem.

Level 3

"Triangle ABC is a right triangle so diameter squared of ®D +
OE =9F squared."”

Note: It is still not clear, but it is more likely that it
is general (Triangle ABC "is a right triangle"). The
idea is still the “obvious’  one for this problem.

Level 4

"If the circles D and E were to be completed the point where
they intersect would bisect BC at F."

Note: Notice that the subject of the conjecture is very
different from levels 2 and 3. The student has
changed the focus of the problem, explored a new
facet of the problem and come up with a
generalization.

As mentioned before, with an abstract question it is
more difficult to determine if the conjectures are
really general. Even level 4 on this question does
not explicitly use general language. Thus, when
comparing the levels of generalization (the variable
LEVEL), there is a natural bias in favor of abstract
questions. In a problem that is posed with data, it
is easy to see when a student is being specific and
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when they think that a conjecture is true at a more
general level. When students are thinking only about
the specific case, they tend to refer to the data or
to make a statement which points to the case in front
of them. "In this triangle, ...", or "In the first
three triangles, ",

When a problem is framed abstractly it is difficult
to make this distinction. It is hard to know if the
statement is a general statement or if the student
for some reason thinks that his statement is only
true for the particular triangle pictured. It is
also difficult to know if the student even considered
this issue. On both the pretest and the posttest, we
credited these conjectures as general statements for
all classes. Thus, we gave the students the benefit
of the doubt on the pretest. On the posttest, after
a geometry course, it was more likely that the
statements were indeed general ones.
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Appendix E-2

SCORING GENERALIZATION/CONJECTURE TESTS

Types of Changes Made in Problem in Order to Make Generalizations

As mentioned in the text, there were three types of changes to
the statements given in the problem that we looked for in
students papers. Students only made changes that could be
classified into two of these types of changes. The third type
was found in Dr. Yerushalmy’s study, but did not appear in the
1985-86 study.

CHANGE IN OBJECT Of INTEREST

There were many wWays in which students changed the object of
interest in a problem. Sometimes the change involved adding a
construction to the diagram, other times it did not. Problem
three in the posttest was a problem that was particularly rich in
the amount of changes students made. Instead of describing this
category verbally, we will use this problem and the students’
work to illustrate this type of change.

The statement of the problem was as follows:

In the diagram below, ABC is a right triangle and D, E and F
are the centers of the three half circles which are on the

/

List as many significant connected statements as you can.

The problem was written to have students use the Pythagorean
theorem and knowledge about areas. Students changed the focus of
the problem to the following objects:




Changes that do not involve additions to the construction

1. Equality of lengths.
Sample generalizations:

"Segment BA could equal BF."
"Hypothesis - AE = BF = BA = FC."

Note: Ma“hematically the change of focus can be trivial
and based on a non-general assumption.

2. The arclength of the semicircles.

Sample generalization:

SFB + A = B0
3. The measures of the central angles in the circles as

compared to the -.rcs.
Sample generalization:
"X BAC = twice BC "

Note: The conjectures are not always correct.

Changes with additions to the construction

4. The triangle created when D, E and F are connected.

Sample generalization:

"DEF is a right triangle."
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5. The circles that can be completed from the half-circles
in the diagram.

Sample generalization:

"The radius (probably FA) = the median from center point to
the opposite side."

Note: The wording of the conjectures is not always
perfectly clear. In this example, different
circles and their centers are not distinguished by
name.

6. The area of circle F in terms of the triangle and the two
other circles (see Figure 3 on the next page).

7. The intersection point of circles D and E (see Figure 4).

CHANGE OF GEOMETRIC RELATIONSHIP

This category of change was much less prevalent than the previous
category. The notion is that as opposed to changing the focus of
the question, one can also change geometrical relationships that
are givens in the problem.

It is important to recognize the difference between these two
types of changes. For example, the last example given in the
previous section is a change in the object of interest and is not
a change of a given relationship. The student thinks that when
he completes the circles that the intersection of the circles D
and E are the midpoint of BC. He does not alter the problem,
rather he uncovers another facet of the problem.

Below is a clear example of a student who is willing to entertain
the notion that relationships that appear to be fixed in the
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problem can change. We again use problem three from the
posttest.

Sample conjecture: "It could be possible for the three circles
to be concentric."

The circles as drawn in the diagram as given are clearly not
concentric, however this student is able to overcome the
relationship suggested in the problem and suggest a new
relationship. In this case, she is not correct.

Another type of change in geometrical relationships is
illustrated by the third question on the pretest. The statement
given was that "A line which passes through the center of a
square and is parallel to the two of its sides, divides the area
of the squarz into two equal areas." Here students could alter
the relationship between the line and the square and ultimately
discover that as long as the line passes through the center of
the square that it will divide the area into two shapes of equal
area. On the pretest, students did not make this type of change.

CHANGE IN NUMERICAL RELATIONSHIPS

A different sort of change is one that focusses on a numerical
aspect of a problem. Students did not exhibit this type of
behavior this year, though they did in Dr. Yerushalmy s previous
study.

Problem two on the pretest presents an opportunity for this type
of change. The right triangles on the grid below have 3, 6 and 8
points on their perimeter. Here a numerical aspect of the

problem is easily accessible and readily available to be changed.

Another example can be sketched using the third problem from the
pretest. A line which pass@s through the center of a square and
is parallel to two of its sides, divides the area of the square
into two equal areas. 1In this statement, the numerical aspect of
the problem is less apparent. However, it is possible to
generalize the statement by trying to figure out how many lines
in what positions will divide the square inte n equal areas for
different values of n.




Appendix F

DIFFERENCES IN STUDENT PERFORMANCE ON TWO TYPES
OF CONJECTURE PROBLEMS

As noted in the body of the text, there are two types of problems
given in the ¢generalization/conjecture tests, problems that are
formulated with data and those that are formulated abstractly.

In order to examine the issue of the differential performance of
the whole sample on the two types of problem formulation, we
compared student achievement on questions one and three for both
the pretests and posttests.

A. Pretest

In general on the pretest, students produced more high level
generalizations on the abstract formulation than on the data
formulation. These generalizations involved more changes and
were correct a smaller percentage of the time than the
generalizations for the data problems. The originality of the
generalizations and the number of types of proofs produced were
about the same for each type of question.

COMPARISONS OF STUDENT PERFORMANCE ON QUESTIONS ONE AND THREE

Variable Chi-sqg. Stat. p-value strength
Cramer's V phi

LEVEL 7.20 : 0.003 -——- .24

(0 vs. 1-5)

ORIGINALITY 1.60 0.451 0.1 -——-

(O vs. 1 vs. 2-3) .

CORRECT 11.23 0.004 0.26 -———

(0-3 vs. 4 vs. 5)

ARGUMENTS 0.26 0.621 - 0.07

(0 vs. 1-3)

CHANGES 3.35 0.067 -—- 0.15

(O vs. 1-3)

In our scoring scheme, students who simply repeated the ideas or
data that were given by the problem or who stated these givens in
a slightly more general form (e.g., noting numerical patterns in
some of the given data) would receive low LEVEL scores and very
high CORRECT scores. After all, when the information that you
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state is written directly in front of you, it is not very
difficult to be correct. We thought that such statements could -
be the cause of the tendency for the more general statements on
question three being correct less often than the less general
statements on problem one.

Therefore, we tried to remove this effect by isolating those
students who merely repeated the ideas or data given in the
problem from the rest of the students. Then we again examined
the differences between the LEVEL and CORRECT scores of the
remaining students” conjectures for questions one and three.

After removing the "repeaters," a chi-square analysis revealed
that a strong, significant difference remained between the scores
of the LEVEL of the rest of the students’ conjectures on
questions one and three (LEVEL--0 vs. 1-5(collapsed): chi-square
= 2.80, Fisher’'s exact p-value < 0.05, phi = 0.46). The "non-
repeaters" also wrote more general statements in response to
question three. However, there were no statistically significant
differences on CORRECT scores between the students® responses to
the two questions (CORRECT--all correct vs. some incorrect: chi-
square = 0.002, p-value < 0.965, phi = 0.09). Thus for this
sample, the statements that were more general and had a higher
LEVEL score were correct as often as statements of a lower LEVEL
that did not simply repeat the information conveyed in the
problem.
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B. Posttest

On the posttest, the chi-square analysis comparing questions one
and three yielded the following results for the five important
variables.

Variable Chi-sg. Stat. p-value strength
Cramer’'s V phi

LEVEL 4.92 0.085 0.23 -

(0-1 vs. 2 vs. 3-5) :

ORIGINALITY 4.36 0.112 . 0.21 -—-

(0-1 vs. 2 vs. 3-5)

CORRECT 6.33 0.042 0.26 -——

(0-2 vs. 3 vs. 4-5)

ARGUMENTS 17.50 0.000 ) -—- 0.41

(O vs. 1-3)

CHANGES 5.67 0.017 - 0.24

(O vs. 1-3)

AFTER REMOVING "REPEATERS"

CORRECT 2.45 0.118 -—- 0.27
(0-4 vs. 5)
LEVEL 0.75 0.386 - 0.17

(0-1 vs. 2-5)

As shown by the table, the difference in LEVEL of the student
generalizations between questions one and three was moderately
strong and approached statistical significance at the .05 level.
Problem three, formulated abstractly, elicited more general
statements. There was no statistically significant difference
between the questions in ORIGINALITY. On the other hand, there
was a strong and significant difference between the questions on
the number of ARGUMENTS given by the students to support their
generalizations and a moderately strong and significant
difference in the CHANGES variable. In both cases, these
differences favored question three.

An examination of CORRECT for the complete set of data shows a
modest, although statistically significant, difference between
the students’® generalizations on the two questions. Students”
generalizations were correct more often on question one, the
guestion for which their statements were not as general.
Unfortunately, when one removes those students whose statements
merely repeat the given, then for both the LEVEL variable and the
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correctness measure the difference is no longer statistically

significant. Thus we cannot conclude as we did in the pretest
that the more general statements were correct as often as the

less general ones which did not repeat the given.

C. Conclusions about Problem Formulation

Most students seemed to be less inhibited in their
generalizations and experience greater freedom of thought when a
question is posed abstractly. Their conjectures are more general
and they present more proofs.

One possible explanation for this phenomenon is that the two
types of questions elicit different responses. A data problem
demands manipulation of the data and reaching conclusions before
further generalizations or a convincing argument can be tackled.
On an abstract question, there is no need to manipulate the data
and one can move immediately to abstract thought and spend the
time on making further generalizations. This difference may be
exacerbated by a testing situation where time is limited.

Since the two kinds of formulation call forth different student
responses, the different types of questions can be used for

different purposes. The data formulation allows the investigator

to gauge the level of generalization that students come to when -
presented with data. It tests student skills in understanding

data.

Problems that are formulated abstractly allow the investigator to
examine the relationship between conjectures and supporting
arguments. Students for whom arguments are an integral part of
the process of making conjectures will make more unsolicited
arguments on this type of question than students who do not see
the connection between proofs and conjectures, or the need for
proof.

132

13u




Appsendix G-1

GENERALIZATION/CONJECTURE PRETEST COMPARISONS
FREQUENCIES OF SCORES OF STUDENTS IN EXPERIMENTAL AND COMPARISON CLASSES
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Appendix G-2

GENERALIZATION/CONJECTURE PRETEST COMPARISONS
FREQUENCIES OF SCORES OF STUDENTS IN EXPERIMENTAL AND COMPARISON CLASSES
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Appendix G-3
GENERALIZATION/CONJECTURE PRETEST COMPARISONS

- FREQUENCIES OF SCORES OF STUDENTS IN EXPERIMENTAL AND COMPARISON CLASSES
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Appendix G-4

GENERALIZATION/CONJECTURE PRETEST COMPARISONS
FREQUENCIES OF SCORES OF STUDENTS IN EXPERIMENTAL AND COMPARISON CLASSES
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Appendix H-1

- GENERALIZATION/CONJECTURE POSTTEST COMPARISONS
FREQUENCIES OF RESPONSES BY VARIABLES
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Appendix H-2

GENERALIZATION/CONJECTURE POSTTEST COMPARISONS
FREQUENCIES OF RESPONSES BY VARIABLES
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Appendix H-3

GENERALIZATION/CONJECTURE POSTTEST COMPARISONS
“ FREQUENCIES OF RESPONSES BY VARIABLES

100 -~
90 -1
80 +
LEVEL (0-5) Level of generalization
ORIGINAL (0-5) Originality of generalization
70 <+ CORRECT (" 5) Cotrectness of genoralization
60 -+
Q
(=]
s
S 50 4 .
o E Experimental Group
]
S 40 4 C Comparison Group
30 4~ High Performance
20 4 E Low Performance
Note:
10 T Highlevels ara 2to 5
High originality are levels 2 to 5
0 4 High correctness are levels 4 and 5§
ORIGINAL
(Chi-square=12.98, (Chi-square=5.86,

p-value<0.0003,phi=0.59) p-value<0.016,phi=0.41)

>
+
100 N=39 N=20
90
80
70
60 CHANGES Changes made to the original statement
% ARGUMENTS Supporting arguments for the generalizations
)
§
& 40 B Exist
30 Don't Exist
E Experimental Group
20
C Comparison Group
10
»
CHANGES ARGUMENTS
. (Chi-square=7.67, (Chi-square=10.42,
Fisher's<0,006,phi=0.40) p-value<0.001,phi=0.46)
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Appendix 1

ARGUMENT/PROOF POSTTIEST

Problem I:

There are two true statements below. Please make an argument to

show that one of these two statements is true. You may choose

either one of the statements.

Please show all of your work. Do not be concerned if you are not

able to develop a full-blown proof, these problems are difficult.
D c

(1) In a regular 10-gon each
interior angle is four times
larger than the adjacent
exterior angle.

. ) £
(2) 1In am ll-gon any angle
bisector of an interior angle
is a perpendicular bisector of M
the opposite side.
G
H
J
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Problem Il

There are two true statements below.
show that one of these two stataments

either vne of the statements.
Please show all of your work.

ﬁlease make an argument to
15 true. You may choose

Do not be concerned if you are not

able to develop a full-blown proof, these problems are difficult.

(1) In a2 square any straight
line which passes through the
center of the square divides
the square’s area into two
equal areas.

{2) Any straight line that
passes through a vertex of a
triangle divides the triangle
intoc two triangles whose areas
are in the same ratio as the
ratio between the two parts of
the side of the triangle which
is opposiie the vertex.

F

142




* Problem III:
There are two true statements below. Please make an argument to
show that one of these two statements is true. You may choose
either one of the statements.
Please show all of your work. Do not be concerned if you are not
able to develop & full-blown proof, these problems are difficult.

~;
(1) In any triangle, the sum
of the lengths of the three

medians is less than the
perimeter.

(2) If a diagonal of any p
trapezoid is also an angle

bisector, then at least one

side of the trapezoid is equal

to one of the bases of the

trapezoid. :
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